K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2 
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3. 
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3. 
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.

4 tháng 1 2017

Số lẻ chia cho 2 dư 1

Số lẻ 1 + số lẻ 2 + số lẻ 3 + số lẻ 4 = số chẵn 1 + số chẵn 2 + số chẵn 3 + số chẵn 4 + 1 + 1 + 1 + 1

=> Tổng 4 số lẻ bất kì luôn chia hết cho 4

4 tháng 1 2017

có bài nào dễ hiểu nữa không

7 tháng 12 2017

 - Nếu trong 5 số lẻ đó  có 4 số  có tổng chia hết cho 4 thì bài toán được chứng minh 

- Nếu trong 5 số lẻ đó  có 4 số không có tổng chia hết cho 4 

Khi các tổng S1,S2 ,....,S5 khi chia cho 4 sẽ có thể  dử là 1,2,3 [ 3 khả năng] 

  Do đó theo nguyên lí Đi - rích - lê sẽ tồn tại hai tổng Sm , S [  m > n ] khi đó sẽ cùng dư khi : 4

 -> Sm-Sn chia hết cho 4

    [ a1 + a2+a3+.........+am ]  -  [ a1 + a2+a3+.........+an ] 

 <=>  an+1 + an+2 + ......................... + am chia hết cho 4

  Vật ttoorng các số an+1 + an+2 + ......................... + am chia hết cho 4 

          Từ 2 th  => bài toán được chứng minh

18 tháng 5 2017

bạn cứ lấy ví dụ đi

18 tháng 5 2017

bảo đi cm thì đòi lấy vd ảo tưởng à ?

22 tháng 10 2016

cái này không khó dài dòng lắm

AA
23 tháng 10 2016

Bạn tham khảo bài tương tự ở đây nhé.

Bài toán 120 - Học toán với OnlineMath

2 tháng 6 2017

Gọi 7 số đó lần lượt là a1 , a2 , ... , a7 . 

Ta chọn được hai số có tổng chia hết cho 2, chẳng hạn a1 + a2 = 2k1 . Còn lại 5 số, lại chọn được hai số có tổng chia hết cho 2, chẳng

hạn a3 + a4 = 2k2

Còn lại 3 số, lại chọn được hai số có tổng chia hết cho 2, chẳng hạn a5 + a6 = 2k3

Xét ba số k1 , k2 , k3 ta chọn được hai số có tổng chia hết cho 2, chẳng hạn k1 + k2 = 2q

Như vậy : 2k1 + 2k2 = 4q hay a1 + a2 + a3 + a4 = 4q \(⋮\)4

2 tháng 6 2017

Gói 7 thì lần lượt sẽ là :"

a, a2 ... => a7 .

Chọn đc 2 số có tổng chia hết cho 2 là : ( ví dụ )

a1 + a2 = 2k1

Vậy còn lại 5 số ! tiếp tục chọn tổng số chia hết cho 2

a3 + a4 = 2k2

Còn lại 3 số ! : a5 + a6 = 2k3

3 số : ta sẽ chọn số chia hết cho 2 :

Như vậy ta có thể làm :

k1 + k2 = 2q

2k1 + 2k2 = 4q

a1 + a2 + a3 + a4 = 4q : 4

Đáp số : .....

Giải như sau:
Bài 1:
Bổ đề: Trong 55 số nguyên dương bất kì tồn tại 33 số có tổng chia hết cho 33
Cm:
TH1: Nếu trong 55 số xuất hiện cả ba kiểu dư 1,2,31,2,3 thì có đpcm
TH2: Chỉ có 22 hoặc 11 trong số ba kiểu dư xuất hiện suy ra theo nguyên lý dirichlet suy ra có 33 số có cùng kiểu dư nên tổng chia hết cho 3đpcm
Bổ đề được chứng minh

Áp dụng vào bài, ta xét 1717 số chia thành 33 nhóm 5,5,75,5,7 phần tử
Theo nhận xét mỗi nhóm đều có 33 số có tổng chia hết cho 33, sau khi chọn, trong mỗi tập chọn được 33 số có tổng lần lượt là 3x1,3x2,3x33x1,3x2,3x3
Sau khi chọn còn 17−9=817−9=8 số
Áp dụng nhận xét tiếp suy ra trong 88 số trên chọn được 33 số tổng là 3x43x4
Còn 8−3=58−3=5 số theo nhận xét chọn được 33 số tổng là 3x53x5
Trong 55 số x1,x2,...,x5x1,x2,...,x5 có 33 số tổng chia hết cho 33 giả sử x1+x2+x3⋮3x1+x2+x3⋮3
Khi đó chọn được 99 số tổng chia hết cho 33 vì 3(x1+x2+x3)⋮93(x1+x2+x3)⋮9 đpcm

Chú ý bài này nếu thay 1717 thành 1616 thì không còn đúng
Vì nếu 1616 số ta chọn các kiểu dư của 1616 số lần lượt là
(1,−1,1,−1,...,1,−1)(1,−1,1,−1,...,1,−1)
Với 88 chữ số 11, 88 chữ số −1−1
Khi đó tổng 99 số bất kì sẽ tối đa là 1+1+1+...+1+−1=71+1+1+...+1+−1=7 (với 88 chữ số 11)
Tối thiểu là −1+−1+...+−1+1=−7−1+−1+...+−1+1=−7 (với 88 chữ số −1−1)
Khi đó tổng 99 số bất kì tối thiểu −7,7−7,7 như vậy tổng chia hết cho 99 khi và chỉ khi tổng đó bằng 00
Nhưng đây là điểu không thể vì trong 99 số giả sử có kk số 11, qq số −1−1
Khi đó k−q=0k−q=0 như vậy k+qk+q chẵn
Như vậy vô lí vì k+q=9k+q=9 lẻ
Do đó 1616 số thì không thỏa mãn

3 tháng 6 2017

Đặt 7 số TN đó là A, B, C, D, E, F, G. Lấy kết quả của bài 1: Trong 3 số tự nhiên bất kỳ luôn có 2 số là số chẵn ( chia hết cho 2)

A, B, C Và D, E, F mỗi nhóm có 1 cặp chia hết cho 2

* Giả thử (A+B) =2 m và (D+E)=2n –> (A+B) + (C+D)= 2(m+n)

Còn 3 số C F G sẽ có 1 cặp chia hết cho 2

( C + F) = 2 p Với m,n,p cúng là số tự nhiên

Trong 3 số m, n, p luôn chọn được 2 số có tổng chia hết cho 2.

*Giả thử (m + n) =2 q ( q là số TN) thì ta có

(A+B) + (C+D)= 2(m+n) = 4q ==> A+B+C+D chia hết cho 4 (ĐPCM)

Tương tự nếu chon các nhóm số khác ta cũng được 4 số trong 7 số bât kỳ trên chia hết cho 4