K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2019

\(A=\frac{2ab}{4ab}+\frac{2ab}{a^2+4b^2}+\frac{1}{8ab}-\frac{1}{2}\)

áp dụng bđt AM-GM , a,b> 0

\(\Rightarrow A\ge2ab\left(\frac{4}{4ab+a^2+4b^2}\right)+\frac{1}{8ab}-\frac{1}{2}\)

\(\Rightarrow A\ge\frac{8ab}{1}+\frac{1}{8ab}-\frac{1}{2}\)

\(\Rightarrow A\ge2-\frac{1}{2}=\frac{3}{2}\)

12 tháng 8 2016

Đề bài phải cho \(a+b+c\le1\) để xảy ra dấu "=" ở điều phải chứng minh.

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

với \(x=a^2+2bc,y=b^2+2ac,z=c^2+2ab\)  được  :

\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{a^2+b^2+c^2+2ab+bc+ac}\)

\(\Rightarrow\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)(đpcm)

12 tháng 8 2016

Dễ chứng minh : (a + b + c)(1/a + 1/b + 1/c) >= 9 
Áp dụng điều đó : 
1/(a^2 + 2bc)+ 1/(b^2 + 2ac) + 1/(c^2 + 2ab) >= 9/(a^2 + b^2 + c^2 + 2ab + 2ac + 2bc) = 9/(a + b + c)^2 >= 9/1^2 = 9 (đpcm)

20 tháng 4 2020

\(1.CMR:\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{b}{a}+\frac{a}{b}+1=\frac{a}{b}+\frac{b}{a}+2\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}+2\ge2+2=4\)

Dấu '' = '' xảy ra khi \(a=b\)

\(2.\\ a.CMR:a^2+2b^2+c^2-2ab-2bc\ge0\forall a,b,c\)

\(a^2+2b^2+c^2-2ab-2bc=a^2-2ab+b^2+c^2-2bc+b^2=\left(a-b\right)^2+\left(b-c\right)^2\ge0\forall a,b,c\)

Dấu '' = '' xảy ra khi \(a=b=c\)

\(b.CMR:a^2+b^2-4a+6b+13\ge0\forall a,b\)

\(a^2+b^2-4a+6b+13=\left(a^2-4a+4\right)+\left(b^2+6b+9\right)=\left(a-2\right)^2+\left(b+9\right)^2\ge0\forall a,b\)

Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=-9\end{matrix}\right.\)