có bao nhiêu số nguyên dương n có 3 chữ số sao cho khi nhân n với các phân số -3/50 15/8 17/20 ta đều được số nguyên?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(^∗\)Xét \(n=2011\)thì \(S\left(2011\right)=2011^2-2011.2011+2010=2010\)(vô lí)
\(^∗\)Xét \(n>2011\)thì \(n-2011>0\)do đó \(S\left(n\right)=n\left(n-2011\right)+2010>n\left(n-2011\right)>n\)(vô lí do \(S\left(n\right)\le n\))
* Xét \(1\le n\le2010\)thì \(\left(n-1\right)\left(n-2010\right)\le0\Leftrightarrow n^2-2011n+2010\le0\)hay \(S\left(n\right)\le0\)(vô lí do \(S\left(n\right)>0\))
Vậy không tồn tại số nguyên dương n thỏa mãn đề bài
Vì A nhỏ nhất nên A .3 nhỏ nhất và A .3 có 2014 chữ số
Mà A. 3 chia hết cho 3 nên tổng các chữ số của A.3 chia hết cho 3 . hơn nữa các chữ số của A .3 đều chẵn
=> A.3 = 4000.... 02 ( Có 2012 chữ số 0) hoặc A.3 = 20000....04 (có 2012 chữ số 0)
Loại A.3 = 2000....04 Vì A = 2000...04 : 3 = 666...8 ( có 2013 chữ số)
=> A = 40000...02 : 3 = 1333....34 ( có 2012 chữ số 3)
Vậy A xuất hiện 2012 lần trong A
BCNN(50;8;20)=200
B(200)={0;200;400;600;800;1000;....}
Số nguyên dương có 3 chữ số là {200;400;600;800}