cho x:y>=0 va \(x2+y2=1\)cm r
\(\frac{1}{\sqrt{2}}< =x3+y3< =1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x<y
<=> x.x<x.y
<=> x\(^2\)<xy
x<y
<=> x.y<y.y
<=>xy<y\(^2\)
b) áp dụng kết quả từ câu a và tính chất bắc cầu, ta có:
x\(^2\)<xy<y\(^2\)
<=> x\(^2\)<y\(^2\)
x\(^2\)<y\(^2\)
=> x\(^2\).y<y\(^2\).y
<=> x\(^2\)y<y\(^3\)(1)
x\(^2\)<y\(^2\)
=> x\(^2\).x<y\(^2\).x
<=> x\(^3\)<xy\(^2\)(2)
x<y
<=> x.xy<y.xy
<=> x\(^2\)y<xy\(^2\)(3)
Từ (1),(2) và (3) ta có
x\(^3\)<y\(^3\)
a, Đặt x2=t(t≥0)x2=t(t≥0)
x4−2mx2+2m−1=0x4−2mx2+2m−1=0
⟺t2−2mt+2m−1=0⟺t2−2mt+2m−1=0 (**)
Để phương trình có 4 nghiệm phân biệt thì Δ′>0⟺m2−2m+1>0⟺(m−1)2>0⟺m≠1Δ′>0⟺m2−2m+1>0⟺(m−1)2>0⟺m≠1 (1)
Và {t1t2=2m−1>0t1+t2=2m>0 (∗){t1t2=2m−1>0t1+t2=2m>0 (∗)
⟺m>12⟺m>12 (2)
Phương trình bậc 4 trùng phương thì có 4 nghiệm trong đó có 2 cặp nghiệm là số đối của nhau.
Mà x1<x2<x3<x4→{x1=−x4x2=−x3x1<x2<x3<x4→{x1=−x4x2=−x3
x4−x3=x3−x2→x4=3x3x4−x3=x3−x2→x4=3x3
TT: x1=3x2x1=3x2
→x1.x4=9x2.x3→t1=9t2→x1.x4=9x2.x3→t1=9t2 ( với t1;t2t1;t2 là 2 nghiệm của pt(**))
Đến đây thay vào (*) bên trên ta được hệ:
⟺{9t22=2m−15t2=m⟺{9t22=2m−15t2=m
→9(2)2−25(1)⟺9m2−50m+25=0⟺(9m−5)(m−5)=0→9(2)2−25(1)⟺9m2−50m+25=0⟺(9m−5)(m−5)=0
⟺m=59⟺m=59 v m=5m=5 (cả 2 đều thỏa mãn)
∙∙ Với m=59⟺x=±1m=59⟺x=±1 v x=±13x=±13
∙∙ Với m=5⟺x=±1m=5⟺x=±1 v x=±3
Vì x2 + y2 =1 \(\Rightarrow\)\(\hept{\begin{cases}x^2< =1\\y^2< =1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< =1\\y< =1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^3< =x^2\\y^3< =y^2\end{cases}}\)(vì x,y>=0)
\(\Rightarrow x^3+y^3< =x^2+y^2=1\) (1)
Áp dụng BDT Cô-si 3 số , ta có :
\(x^3+x^3+\frac{1}{2\sqrt{2}}>=3\sqrt[3]{x^3.x^3.\frac{1}{2\sqrt{2}}}=\frac{3x^2}{\sqrt{2}}\)
\(y^3+y^3+\frac{1}{2\sqrt{2}}>=3\sqrt[3]{y^3.y^3.\frac{1}{2\sqrt{2}}}=\frac{3y^2}{\sqrt{2}}\)
Cộng 2 vế , ta có :
\(2\left(x^3+y^3\right)+\frac{2}{2\sqrt{2}}>=\left(x^2+y^2\right)\frac{3}{\sqrt{2}}\)
\(\Rightarrow2\left(x^3+y^3\right)+\frac{1}{\sqrt{2}}>=\frac{3}{\sqrt{2}}\) ( Vì \(x^2+y^2=1\))
\(\Rightarrow2\left(x^3+y^3\right)>=\frac{2}{\sqrt{2}}\)
\(\Rightarrow x^3+y^3>=\frac{1}{\sqrt{2}}\) (2)
Từ (1) và (2) => Điều cần chứng minh .