K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2023

\(\sqrt{x^2-6x+9}+x=11\); (ĐKXĐ\(\forall x\in R\))

<=> \(\sqrt{x^2-6x+9}=11-x\) 

<=> \(\sqrt{\left(x-3\right)^2}=11-x\)

<=> \(|x-3|=11-x\)

<=> \(\left[{}\begin{matrix}x-3=11-x\\x-3=-11+x\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}2x=14\\0x=-8\left(vô\right)lí\left(\right)\end{matrix}\right.\)

<=> x=7 (thỏa mãn ĐKXĐ)

Vậy phương trình có nghiệm là x=7

13 tháng 9 2023

Thiếu soát gì mog bạn thông cảm :]

loading...

loading...

17 tháng 9 2023

a chj Lê quay lại gòi :DDD

a: =>|2x-1|=3

=>2x-1=3 hoặc 2x-1=-3

=>2x=-2 hoặc 2x=4

=>x=2 hoặc x=-1

c: \(\Leftrightarrow\left|x-3\right|=11-x\)

=>x<=11 và (x-3)^2=(11-x)^2

=>x<=11 và x^2-6x+9=x^2-22x+121

=>x<=11 và 16x=112

=>x=7

d:

ĐKXĐ: 3x+19>=0

=>x>=-19/3

PT =>x>=-3 và (3x+19)=(x+3)^2=x^2+6x+9

=>x>=-3 và x^2+6x+9-3x-19=0 

=>x>=-3 và (x+5)(x-2)=0

=>x=2

e: =>\(\sqrt{x^2+x+5}=x+1\)

=>x>=-1 và x^2+x+5=x^2+2x+1

=>x>=-1 và 2x+1=x+5

=>x=4

2 tháng 7 2023

Đề yc giải pt à em?

2 tháng 7 2023

Câu b bạn có bị lỗi dấu căn không mà sao nó kéo dài cả 2 vế pt vậy :v

\(a,\sqrt{x^2-6x+9}+x=11\\ \Leftrightarrow\sqrt{\left(x-3\right)^2}=11-x\)

\(\Leftrightarrow\left|x-3\right|=11-x\\ TH_1:x\ge3\\ x-3=11-x\\ \Leftrightarrow2x=14\\ \Leftrightarrow x=7\left(tm\right)\)

\(TH_2:x< 3\\ -x+3=11-x\\ \Leftrightarrow-x+x=11-3\\ \Leftrightarrow0=8\left(VL\right)\)

Vậy \(S=\left\{7\right\}\)

\(c,\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\) \(\left(dk:x\ge-1\right)\)

\(\Leftrightarrow\sqrt{4^2}.\sqrt{\left(x+1\right)}-\sqrt{3^2}.\sqrt{\left(x+1\right)}=4\left(1\right)\)

Đặt \(a=\sqrt{x+1}\left(a\ge0\right)\)

Pt trở thành : \(4a-3a=4\Leftrightarrow a=4\left(tmdk\right)\)

\(\Rightarrow\sqrt{x+1}=4\\ \Rightarrow\left(\sqrt{x+1}\right)^2=16\\ \Rightarrow\left|x+1\right|=16\)

\(TH_1:x\ge-1\\ x+1=16\Leftrightarrow x=15\left(tm\right)\\ TH_2:x< -1\\ -x-1=16\Leftrightarrow x=-17\left(tm\right)\)

Nhưng loại TH2 vì dk ban đầu là \(x\ge-1\)

Vậy \(S=\left\{15\right\}\)

\(d,\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\left(dk:x\ge-1\right)\\ \Leftrightarrow\sqrt{9}.\sqrt{x+1}+\sqrt{4}.\sqrt{x+1}-\sqrt{x+1}=0\)

Đặt \(\sqrt{x+1}=a\left(a\ge0\right)\)

Tới đây bạn làm tương tự câu c nha.

 

 

23 tháng 7 2019

d) Bài này có thể dùng hằng đẳng thức rồi phá dấu GTTĐ nhưng theo em là khá mất công nên bình phương lên rồi quy về pt bậc 2 cho lẹ:)

PT \(\Leftrightarrow4x^2-4x+1=x^2-6x+9\)

\(\Leftrightarrow3x^2+2x-8=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=-2\end{matrix}\right.\) (delta là ra:D)

Vậy..

23 tháng 7 2019

e) Bài này cũng vậy, em nghĩ bình phương lên cho lẹ :D

ĐK: x>= 4

\(\left(x-4\right)+4\sqrt{x-4}=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}=0\\\sqrt{x-4}=-4\left(L\right)\end{matrix}\right.\Rightarrow x=4\)

c: Ta có: \(\sqrt{x^2}=x\)

\(\Leftrightarrow\left|x\right|=x\)

hay \(x\ge0\)

d: Ta có: \(\sqrt{x^2-2x+1}=x-1\)

\(\Leftrightarrow\left|x-1\right|=x-1\)

hay \(x\ge1\)

Ta có: \(11-\sqrt{x^2-6x+9}=\sqrt{25}\)

\(\Leftrightarrow11-\left|x-3\right|=5\)

\(\Leftrightarrow\left|x-3\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=6\\x-3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-3\end{matrix}\right.\)

Vậy: S={-3;9}

23 tháng 7 2019

a) \(\sqrt{x^2-6x+9}+x=11\)

\(\Rightarrow\sqrt{\left(x-3\right)^2}+x=11\)

\(\Rightarrow x-3+x=11\) 

\(\Rightarrow2x=14\Rightarrow x=7\) 

Vậy........

b) \(\sqrt{3x^2-4x+3}=1-2x\)

\(3x^2-4x+3=1-4x+4x^2\) 

\(3x^2-4x^2-4x+4x=-2\) 

\(-x^2=-2\) 

\(2=x^2\Rightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\) 

Vậy.........

23 tháng 7 2019

d) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\) 

\(\Rightarrow2x-1=x-3\) 

\(\Rightarrow x=1-3\) 

\(\Rightarrow x=-2\) 

Vậy  x=-2

f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)

\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)

\(\Leftrightarrow\left|x+1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

25 tháng 7 2016

a) pt<=> \(\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)

     <=>\(\left|x-2\right|+\left|x-3\right|=1\)

đến đây chia 3 trường hợp để phá trị tuyệt đối là ra 

b) \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)

<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|=1\)

câu này cũng tương tự câu a nha