Cho x , y , z \(\in Z\)thỏa : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\). Hãy tính giá trị biểu thức :
\(M=\frac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow x=-y\text{ hoặc }y=-z\text{ hoặc }z=-x\)
\(+\text{Nếu }x=-y\text{ thì }x^8=\left(-y\right)^8=y^8\Rightarrow x^8-y^8=0\Rightarrow M=\frac{3}{4}\)
\(+\text{Nếu }y=-z\text{ thì }y^9=\left(-z\right)^9=-z^9\Rightarrow y^9+z^9=0\Rightarrow M=\frac{3}{4}\)
\(+\text{Nếu }z=-x\text{ thì }z^{10}=\left(-x\right)^{10}=x^{10}\Rightarrow z^{10}-x^{10}=0\Rightarrow M=\frac{3}{4}\)
\(\text{Vậy M}=\frac{3}{4}.\)
ta có y+z-x/x=z+x-y/y=x+y-z/z=y+z-x+z+x-y+x+y-z/x+y+z=(2y-y)+(2x-x)+(2z-z)/x+y+z=y+x+z/x+y+z=1
=>y+z-x/x=1 =>z+x-y/y=1
z+x-y/y=1 x+y-z/z=1
=> y+z-x=x => z+x-y=y
z+x-y=y x+y-z=z
=>2y-2x=x-y =>2z-2y=y-z
3y-3x=0 3z-3y=0
y-x=0 z-y=0
=>x=y =>z=y
=>x=y=z
=> y+z-x/x+z+x-y/y+x+y-z/z= 0,(3)+0,(3)+0,(3)=1
=>x +y+z=0,(3)+0,(3)+0,(3)=1
thay vào b=(1+x/y). (1+y/z). (1+z/x)
b=(1+0,(3)/0,(3)).(1+0,(3)/0,(3)).(1+0,(3)/0,(3))
b=(1+1).(1+1).(1+1)
b=2.2.2
b=2^3
b=8
CÂU TRẢ LỜI TRƯỚC MK BẤM NHẦM
Từ\(\frac{y+z-x}{x}\)=\(\frac{z+x-y}{y}\)= \(\frac{x+y-z}{z}\)\(\Rightarrow\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}\) ( t/c dãy tỉ số bằng nhau)
\(\Rightarrow\frac{x+y+z}{x+y+z}=1\)
Khi đó: B=\(\left(1+\frac{x}{y}\right)=\left(1+\frac{y}{z}\right)=\left(1+\frac{z}{x}\right)\) \(\Rightarrow\frac{y+x}{y}=\frac{z+y}{z}=\frac{x+z}{x}\) ( Quy đồng từng phân thức)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{y+x+z+y+x+z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}\)
\(=x+y+z\)
\(=1\)
Vậy B =1
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\)
\(=\frac{x+y+z}{x+y+z}=1\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)
\(\Rightarrow x=y=z\)
\(\Rightarrow B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)
\(=2.2.2=8\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có
y + z - x / x = z + x - y / y = x + y - z / z = y + z - x + z +x - y + x + y - z / x + y + z = x + y + z / x + y + z
TH1 : x + y + z = 0
=> x + y = - z ; y + z = - x và x + z = -y
Ta có : B = ( 1 + x / y ) ( 1 + y / z ) ( 1 + z / x )
= ( x + y / y ) ( z + y / z ) ( x + z / x ) ( 1 )
= - z / y . ( - x / z ) ( -y / x )
= - 1
TH2 : x + y + z khác 0
Do đó y + z - x / x = z + x - y / y = x + y - z / z = x + y + z / x + y + z = 1
thì y + z - x / x = 1 => y + z - x = x => y + z = 2x ( 2 )
z + x - y / y = 1 z + x - y = y z + x = 2y ( 3 )
x + y - z / z = 1 x + y - z = z x + y = 2z ( 4 )
Thay ( 2 ) , ( 3 ) , ( 4 ) vào ( 1 ) ta có
B = 2x/y . 2y / z . 2z / x
= 2 . 2 . 2 = 8
Vậy B = - 1 khi x + y + z = 0
B = 8 khi x + y + z khác 0
[ xin lỗi nha , tại mình không biết viết phân số ]
Đề sai kìa bạn ơi
Nếu x+y+z = 0 thì
B = x+y/y . y+z/z . z+x/x = -z/y.(-x/z).(-y/x) = -1
Nếu x+y+z khác 0 thì :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
y+z-x/x = z+x-y/y = x+y-z/z = y+z-x+z+x-y+x+y-z/x+y+z = 1
=> y+z-x = y ; z+x-y = y ; x+y-z = x
=> x=y=z
=> B = (1+1).(1+1).(1+1) = 8
k mk nha
Lời giải:
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}$
$\Rightarrow (\frac{1}{x}+\frac{1}{y})+(\frac{1}{z}-\frac{1}{x+y+z})=0$
$\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0$
$\Leftrightarrow (x+y)(\frac{1}{xy}+\frac{1}{z(x+y+z)})=0$
$\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0$
$\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0$
$\Leftrightarrow (x+y)(y+z)(x+z)=0$
$\Leftrightarrow x=-y$ hoặc $y=-z$ hoặc $z=-x$
Nếu $x=-y$ thì:
$P=\frac{3}{4}+[(-y)^8-y^8](y^9+z^9)(z^{10}-x^{10})=\frac{3}{4}+0.(y^9+z^9)(z^{10}-x^{10})=\frac{3}{4}$
Nếu $y=-z$ thì:
$P=\frac{3}{4}+(x^8-y^8)[(-z)^9+z^9](z^{10}-x^{10})=\frac{3}{4}+(x^8-y^8).0.(z^{10}-x^{10})=\frac{3}{4}$
Nếu $z=-x$ thì:
$P=\frac{3}{4}+(x^8-y^8)(y^9+z^9)[(-x)^{10}-x^{10}]=\frac{3}{4}+(x^8-y^8)(y^9+z^9).0=\frac{3}{4}$
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\left(x;y;z,x+y+z\ne0\right)\)
\(\Rightarrow\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)
\(\Rightarrow\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)
\(\Leftrightarrow\left(xy+yz\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow y\left(x+z\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz+xz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left(x+y\right)\left(y+z\right)=0\)
Từ đó \(x=-z\)hoặc \(x=-y\)hoặc \(y=-z\)
-Nếu \(x=-z\Rightarrow z^{2017}+x^{2017}=0\Rightarrow M=\frac{19}{4}+0=\frac{19}{4}\)
Tương tự với các trường hợp còn lại, ta cũng tính được \(M=\frac{19}{4}\)
bạn chỉ cần cố gắng là làm được
qui đồng đy :v