K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

LM
Lê Minh Vũ
CTVHS VIP
5 tháng 7 2023

\(\dfrac{x-17}{33}+\dfrac{x-21}{29}+\dfrac{x}{25}=4\)

\(\dfrac{x-17}{33}+\dfrac{x-21}{29}+\dfrac{x}{25}-4=0\)

\(\dfrac{\left(x-17\right)\times725}{33\times725}+\dfrac{\left(x-21\right)\times825}{29\times825}+\dfrac{x\times957}{25\times957}-\dfrac{4\times23925}{23925}=0\)

\(725x-12325+825x-17325+957x-95700=0\)

\(2507x-125350=0\)

\(2507x=125350\)

\(x=50\)

LM
Lê Minh Vũ
CTVHS VIP
5 tháng 7 2023

Nếu mà theo cách x - 50 = 0 thì bạn theo cách này nha:

\(\dfrac{x-17}{33}+\dfrac{x-21}{29}+\dfrac{x}{25}=4\)

\(\dfrac{x-17}{33}+\dfrac{x-21}{29}+\dfrac{x}{25}-4=0\)

\(\dfrac{x-17}{33}-1+\dfrac{x-21}{29}-1+\dfrac{x}{25}-2=0\)

\(\dfrac{x-50}{33}+\dfrac{x-50}{29}+\dfrac{x-50}{25}=0\)

\(\left(x-50\right)\left(\dfrac{1}{33}+\dfrac{1}{29}+\dfrac{1}{5}\right)=0\)

Vì  \(\dfrac{1}{33}+\dfrac{1}{29}+\dfrac{1}{25}>0\)

=> \(x-50=0\)
=> \(x=50\)

 

 

4 tháng 12 2023

chịu

 

17 tháng 2 2022

\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1=0\)

\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{50-x}{27}=0\)

\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}\ne0\right)=0\Leftrightarrow x=50\)

17 tháng 2 2022

\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}=-4\\ \Leftrightarrow\left(\dfrac{29-x}{21}+1\right)+\left(\dfrac{27-x}{23}+1\right)+\left(\dfrac{25-x}{25}+1\right)+\left(\dfrac{23-x}{27}+1\right)=0\\ \Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{50-x}{27}=0\\ \Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}\right)=0\\ \Leftrightarrow50-x=0\left(vì.\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}\ne0\right)\\ \Leftrightarrow x=50\)

5 tháng 1 2018

a) \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)

\(\Leftrightarrow\dfrac{x-5}{100}-1+\dfrac{x-4}{101}-1+\dfrac{x-3}{102}-1=\dfrac{x-100}{5}-1+\dfrac{x-101}{4}-1+\dfrac{x-102}{3}-1\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}=0\)

\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow\left(x-105\right)=0;\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}\right)\ne0\)

\(\Leftrightarrow x=105\)

b) \(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=-5\)

\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)

\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{50-x}{27}+\dfrac{50-x}{29}=0\)

\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{29}+\dfrac{1}{27}+\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}\right)=0\)

\(\Leftrightarrow50-x=0;\left(\dfrac{1}{29}+\dfrac{1}{27}+\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}\right)\ne0\)

\(\Leftrightarrow x=50\)

b: \(\Leftrightarrow\left(\dfrac{29-x}{21}+1\right)+\left(\dfrac{27-x}{23}+1\right)+\left(\dfrac{25-x}{25}+1\right)+\left(\dfrac{23-x}{27}+1\right)+\left(\dfrac{21-x}{29}+1\right)=0\)

=>50-x=0

hay x=50

c: \(\Leftrightarrow\dfrac{x-2}{2001}+1=\dfrac{x-1}{2002}+\dfrac{x}{2003}\)

\(\Leftrightarrow\left(\dfrac{x-2}{2001}-1\right)=\left(\dfrac{x-1}{2002}-1\right)+\left(\dfrac{x}{2003}-1\right)\)

=>x-2003=0

hay x=2003

17 tháng 3 2019

Ta có: \(\frac{x-29}{1970}+\frac{x-27}{1972}+\frac{x-25}{1974}+\frac{x-23}{1976}+\frac{x-21}{1978}+\frac{x-19}{1980}\)\(=\frac{x-1970}{29}+\frac{x-1972}{27}+\frac{x-1974}{25}+\frac{x-1976}{23}+\frac{x-1978}{21}+\frac{x-1980}{19}\)

\(\Leftrightarrow\left(\frac{x-29}{1970}-1\right)+\left(\frac{x-27}{1972}-1\right)+\left(\frac{x-25}{1974}-1\right)+\left(\frac{x-23}{1976}-1\right)+\left(\frac{x-21}{1978}-1\right)+\left(\frac{x-19}{1980}-1\right)\)\(=\left(\frac{x-1970}{29}-1\right)+\left(\frac{x-1972}{27}-1\right)+\left(\frac{x-1974}{25}-1\right)+\left(\frac{x-1976}{23}-1\right)+\left(\frac{x-1978}{21}-1\right)+\left(\frac{x-1980}{19}-1\right)\)

\(\Leftrightarrow\frac{x-1999}{1970}+\frac{x-1999}{1972}+\frac{x-1999}{1974}+\frac{x-1999}{1976}+\frac{x-1999}{1978}+\frac{x-1999}{1980}\)\(=\frac{x-1999}{29}+\frac{x-1999}{27}+\frac{x-1999}{25}+\frac{x-1999}{24}+\frac{x-1999}{21}+\frac{x-1999}{19}\)

\(\Leftrightarrow\left(x-1999\right)\left(\frac{1}{1970}+\frac{1}{1972}+\frac{1}{1974}+\frac{1}{1976}+\frac{1}{1978}+\frac{1}{1980}\right)\)\(=\left(x-1999\right)\left(\frac{1}{29}+\frac{1}{27}+\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)\)

\(\Leftrightarrow\left(x-1999\right)\left(\frac{1}{1970}+\frac{1}{1972}+\frac{1}{1974}+\frac{1}{1976}+\frac{1}{1978}+\frac{1}{1980}-\frac{1}{29}-\frac{1}{27}-\frac{1}{25}-\frac{1}{23}-\frac{1}{21}-\frac{1}{19}\right)=0\)\(\Leftrightarrow\) \(x-1999=0\) (Vì ...khác 0)

\(\Leftrightarrow x=1999\)(thỏa mãn)

Vậy \(x=1999\)

22 tháng 2 2017

\(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}=-4\\\)

\(\Leftrightarrow\frac{29-x}{21}+1+\frac{27-x}{23}+1+\frac{25-x}{25}+1+\frac{23-x}{27}+1=0\)

\(\Leftrightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}=0\\\)

\(\Leftrightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}\right)=0\)

\(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}\ne0\)

\(\Rightarrow50-x=0\)

\(\Leftrightarrow x=50\)

22 tháng 2 2017

29-x/21 + 27-x/23 + 25-x/25 + 23-x/27 = -4

<=> (29-x/21 + 1) + (27-x/23 + 1) + (25-x/25 + 1) + (23-x/27 + 1) = -4 + 4

<=> 50-x/21 + 50-x/23 + 50-x/25 + 50-x/27 = 0

<=> (50-x)(1/21 + 1/23 + 1/25 + 1/27) = 0

Mà 1/21 + 1/23 + 1/25 + 1/27 > 0

Nên 50-x=0 <=> x=50

Vậy ...

19 tháng 1 2019

a, \(\Leftrightarrow3x^2-3+5=3x^2+2x-3x-2\)

\(\Leftrightarrow3x^2-3x-2x+3x=-2+3-5\)

<=>x=-4

b, \(\Leftrightarrow\dfrac{x+4}{5}-\dfrac{5x}{5}+\dfrac{20}{5}=\dfrac{2x}{6}-\dfrac{3\left(x-2\right)}{6}\)

\(\Leftrightarrow\dfrac{x+4-5x+20}{5}=\dfrac{2x-3x+6}{6}\)

\(\Leftrightarrow\dfrac{6\left(-4x+24\right)}{30}=\dfrac{5\left(-x+6\right)}{30}\)

<=>-24x+144=-5x+30

<=>-5x+24x=144-30

<=>19x=114

<=>x=6

19 tháng 1 2019

bạn tự kết luận

a) Ta có: \(\dfrac{2}{3}x-1=\dfrac{3}{2}\)

\(\Leftrightarrow x\cdot\dfrac{2}{3}=\dfrac{5}{2}\)

hay \(x=\dfrac{5}{2}:\dfrac{2}{3}=\dfrac{5}{2}\cdot\dfrac{3}{2}=\dfrac{15}{4}\)

b) Ta có: \(\left|5x-\dfrac{1}{2}\right|-\dfrac{2}{7}=25\%\)

\(\Leftrightarrow\left|5x-\dfrac{1}{2}\right|=\dfrac{1}{4}+\dfrac{2}{7}=\dfrac{15}{28}\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-\dfrac{1}{2}=\dfrac{15}{28}\\5x-\dfrac{1}{2}=\dfrac{-15}{28}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{29}{28}\\5x=\dfrac{-1}{28}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{29}{140}\\x=\dfrac{-1}{140}\end{matrix}\right.\)

c) Ta có: \(\dfrac{x-3}{4}=\dfrac{16}{x-3}\)

\(\Leftrightarrow\left(x-3\right)^2=64\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=8\\x-3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-5\end{matrix}\right.\)

d) Ta có: \(\dfrac{-8}{13}+\dfrac{7}{17}+\dfrac{21}{31}\le x\le\dfrac{-9}{14}+4-\dfrac{5}{14}\)

\(\Leftrightarrow\dfrac{3246}{6851}\le x\le3\)

\(\Leftrightarrow x\in\left\{1;2;3\right\}\)

d: \(\Leftrightarrow x^3+6x^2+12x+8-x^3+6x^2-12x+8=12x^2-12x-8\)

\(\Leftrightarrow12x^2+16=12x^2-12x-8\)

=>-12x=24

hay x=-2

e: \(\left(x+5\right)\left(x+2\right)-3\left(4x-3\right)=\left(x-5\right)^2\)

\(\Leftrightarrow x^2+7x+10-12x+9=x^2-10x+25\)

=>-5x+19=-10x+25

=>5x=6

hay x=6/5

f: \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)

=>x-105=0

hay x=105