K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=5^3(5^2-5+1)

=5^3*21 chia hết cho 7

2 tháng 7 2023

=5^5 -5^4+5^3=5^3.5^2 -5^3.5+5^3 
=5^3(5^2-5+1)=5^3.21 
Vì 21 chia hết cho 7 =>5^3.21 chia hết cho 7 
Vậy 5^5 -5^4+5^3 chia hết cho 7

14 tháng 7 2017

\(S=5+5^2+5^3+5^4+...+6^{96}\)

sử dụng phương pháp nhóm ta được:

\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{95}+5^{96}\right)\)

sử dụng phương pháp phân tích đa thức thành nhân tử ta được:

\(S=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{94}\left(5+5^2\right)\)

\(S=30+5^2\cdot30+...+5^{94}\cdot30\)

\(S=30\cdot\left(1+5^5+...+5^{94}\right)⋮10\)

vậy => đpcm

14 tháng 7 2017

 S = 5+52+53+54+...+596

S = (5+52) + (53+ 54)+....+ ( 595+ 596)

S = 30 + 52( 5+ 52) +..... + 594( 5+ 52)

S= 30 + 52.30 + .... + 594. 30

S= 30 ( 1 + 52+...+ 594)

S= [ 10. 3( 1 + 52+...+ 594)] chia hết cho 10

=> S chia hết cho 10

4 tháng 6 2018

ta có: 55 - 54 + 53

= 53. ( 52 - 5 +1)

= 53. ( 25 -5 +1)

= 53. ( 20 +1)

=53. 21

mà 21 chia hết cho 7

=> 53.21 chia hết cho 7

=> 55-54 + 53 chia hết cho 7

4 tháng 6 2018

   55 - 5+ 53

= 53 . ( 52 - 5 + 1 )

= 53 . 21 

 = 53 . 3 . 7 \(⋮\)7

     Vậy 55 - 54 + 53 \(⋮\)7

26 tháng 8 2018

A = 1 + 4 + 4^2 + 4^3 + ...+ 4^59 ( có 60 số hạng)

A = (1+4+4^2) + (4^3+4^4+4^5) + ...+ (4^57+4^58 + 4^59) ( có 20 cặp số hạng)

A = 21 + 4^3.(1+4+4^2) + ....+ 4^57.(1+4+4^2)

A= 21 + 4^3.21 + ...+ 4^57.21

A = 21.(1+4^3+...+4^57) chia hết cho 21

phần b đề là j z bn

Bài 3:

a: a*S=a^2+a^3+...+a^2023

=>(a-1)*S=a^2023-a

=>\(S=\dfrac{a^{2023}-a}{a-1}\)

b: a*B=a^2-a^3+...-a^2023

=>(a+1)B=a-a^2023

=>\(B=\dfrac{a-a^{2023}}{a+1}\)

8 tháng 4 2020

Gọi 5 số là a;a+1;a+2;a+3;a+4 (a thuộc N)

=> Tổng số là: a+a+1+a+2+a+3+a+4

=(a+a+a+a+a)+(1+2+3+4)

=5a+10

Có 5a chia hết cho 5 và 10 chia hết cho 5

=> 5a+10 chia hết cho 5

=> Tổng 5 số chia hết cho 5

8 tháng 4 2020

Gọi 5 số đó là a,a+1,a+2,a+3,a+4

Ta có: a+a+1+a+2+a+3+a+4

=(a+a+a+a+a)+(1+2+3+4)

=5.a+10

=5.(a+2) chia hết cho 5

Vậy tổng của 5 số chia hết cho 5.

24 tháng 3 2019

1/2<2/3

3/4<5/6

.........

cứ tương tự rồi + vế theo vế là ra nhé

Hok tốt

16 tháng 11 2021

\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)

16 tháng 11 2021

Giúp mình cả bài 4,5 ở dưới được ko?