chứng minh rằng : A= ( 5\(^5\) - 5\(^4\) + 5\(^3\) ) ⋮ 7
giúp mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=5+5^2+5^3+5^4+...+6^{96}\)
sử dụng phương pháp nhóm ta được:
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{95}+5^{96}\right)\)
sử dụng phương pháp phân tích đa thức thành nhân tử ta được:
\(S=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{94}\left(5+5^2\right)\)
\(S=30+5^2\cdot30+...+5^{94}\cdot30\)
\(S=30\cdot\left(1+5^5+...+5^{94}\right)⋮10\)
vậy => đpcm
S = 5+52+53+54+...+596
S = (5+52) + (53+ 54)+....+ ( 595+ 596)
S = 30 + 52( 5+ 52) +..... + 594( 5+ 52)
S= 30 + 52.30 + .... + 594. 30
S= 30 ( 1 + 52+...+ 594)
S= [ 10. 3( 1 + 52+...+ 594)] chia hết cho 10
=> S chia hết cho 10
ta có: 55 - 54 + 53
= 53. ( 52 - 5 +1)
= 53. ( 25 -5 +1)
= 53. ( 20 +1)
=53. 21
mà 21 chia hết cho 7
=> 53.21 chia hết cho 7
=> 55-54 + 53 chia hết cho 7
55 - 54 + 53
= 53 . ( 52 - 5 + 1 )
= 53 . 21
= 53 . 3 . 7 \(⋮\)7
Vậy 55 - 54 + 53 \(⋮\)7
A = 1 + 4 + 4^2 + 4^3 + ...+ 4^59 ( có 60 số hạng)
A = (1+4+4^2) + (4^3+4^4+4^5) + ...+ (4^57+4^58 + 4^59) ( có 20 cặp số hạng)
A = 21 + 4^3.(1+4+4^2) + ....+ 4^57.(1+4+4^2)
A= 21 + 4^3.21 + ...+ 4^57.21
A = 21.(1+4^3+...+4^57) chia hết cho 21
phần b đề là j z bn
Bài 3:
a: a*S=a^2+a^3+...+a^2023
=>(a-1)*S=a^2023-a
=>\(S=\dfrac{a^{2023}-a}{a-1}\)
b: a*B=a^2-a^3+...-a^2023
=>(a+1)B=a-a^2023
=>\(B=\dfrac{a-a^{2023}}{a+1}\)
Gọi 5 số là a;a+1;a+2;a+3;a+4 (a thuộc N)
=> Tổng số là: a+a+1+a+2+a+3+a+4
=(a+a+a+a+a)+(1+2+3+4)
=5a+10
Có 5a chia hết cho 5 và 10 chia hết cho 5
=> 5a+10 chia hết cho 5
=> Tổng 5 số chia hết cho 5
Gọi 5 số đó là a,a+1,a+2,a+3,a+4
Ta có: a+a+1+a+2+a+3+a+4
=(a+a+a+a+a)+(1+2+3+4)
=5.a+10
=5.(a+2) chia hết cho 5
Vậy tổng của 5 số chia hết cho 5.
\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)
A=5^3(5^2-5+1)
=5^3*21 chia hết cho 7
=5^5 -5^4+5^3=5^3.5^2 -5^3.5+5^3
=5^3(5^2-5+1)=5^3.21
Vì 21 chia hết cho 7 =>5^3.21 chia hết cho 7
Vậy 5^5 -5^4+5^3 chia hết cho 7