K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

ý c làm thế nào vậy bạn?

10 tháng 3 2019

M O C B A E I H K D

a) Xét đường tròn (O) có tiếp tuyến MA, cát tuyến MBC => MA2 = MB.MC (Hệ thức lượng đường tròn) (đpcm)

Xét \(\Delta\)MOA vuông tại A, đường cao AH => MA2 = MH.MO (Hệ thức lượng tam giác vuông) (đpcm)

b) Từ câu a ta có: MB.MC = MH.MO (=AM2) => \(\Delta\)MBH ~ \(\Delta\)MOC (c.g.c) => ^MHB = ^MCO

=> Tứ giác BCOH nội tiếp đường tròn (đpcm).

c) Áp dụng ĐL Pytagore, ta có các đẳng thức về cạnh:

IK2 = OI2 - OK2 = OI2 - OA2 = (OM - IM)2 - OA2 = OM2 - 2.OM.IM + IM2 - OA2 = AM2 - MH.MO + IM2

= AM2 - AM2 + IM2 = IM2 => IK = IM. Do đó: IK = IM = IH = MH/2

Xét \(\Delta\)MKH có: Trung tuyến KI=MH/2 (cmt) => \(\Delta\)KMH vuông tại K (đpcm).

d) Từ câu a: \(MA^2=MB.MC=\frac{MC}{4}.MC=\frac{MC^2}{4}\) => MA = MC/2 = MD

Từ đó: MA2 = MD2 = MH.MO => \(\Delta\)MDH ~ \(\Delta\)MOD (c.g.c) => ^MDH = ^MOD = 1/2.Sđ(HD(ODH)

Suy ra: MC tiếp xúc với đường tròn (ODH) (đpcm).

25 tháng 1 2020

Hình tự vẽ ạ!

a, Xét  \(\Delta MED\)và \(\Delta AEM\)có:

\(\widehat{DME}=\widehat{ACM}\left(so-le-trong\right)\)

\(\widehat{MAE}=\widehat{ACM}\)(cùng chắn cung \(AD\))

\(\Rightarrow\widehat{DME}=\widehat{MAE}\)

\(\widehat{E}\)là góc chung.

\(\Rightarrow\Delta MED~\Delta AEM\left(1\right)\)

Xét \(\Delta BED\)và \(\Delta AEB\)có:

\(\widehat{EBD}=\widehat{BAD}\)(cùng chắn cung \(BD\))

\(\widehat{E}\)là góc chung

\(\Rightarrow\Delta BED~\Delta AEB\left(3\right)\)

b, Từ \(\left(1\right)\Rightarrow\frac{ME}{AE}=\frac{ED}{EM}\Rightarrow ME^2=ED.EA\left(2\right)\)

Từ \(\left(3\right)\Rightarrow\frac{EB}{EA}=\frac{ED}{EB}\Rightarrow EB^2=EA.ED\left(4\right)\)

Từ \(\left(2\right)\left(4\right)\Rightarrow EM=EB\)

\(\Rightarrow E\)là trung điểm của \(MB\left(Đpcm\right)\)

~~~Happy new year ~~~

Xét tứ giác OMAN có

góc OMA+góc ONA=180 độ

nên OMAN là tứ giác nội tiếp

a) Xét (O) có 

\(\widehat{AED}\) là góc nội tiếp chắn \(\stackrel\frown{AD}\)

\(\widehat{DAM}\) là góc tạo bởi tia tiếp tuyến AM và dây cung AD

Do đó: \(\widehat{AED}=\widehat{DAM}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)

\(\Leftrightarrow\widehat{AEM}=\widehat{DAM}\)

Xét ΔAEM và ΔDAM có 

\(\widehat{AEM}=\widehat{DAM}\)(cmt)

\(\widehat{AMD}\) chung

Do đó: ΔAEM∼ΔDAM(g-g)

\(\dfrac{ME}{MA}=\dfrac{MA}{MD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(ME\cdot MD=MA^2\)(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAOM vuông tại A có AH là đường cao ứng với cạnh huyền AO, ta được:

\(MH\cdot MO=AM^2\)

mà \(ME\cdot MD=AM^2\)(cmt)

nên \(MD\cdot ME=MH\cdot MO\)(đpcm)

5 tháng 6 2022

undefinedundefined

25 tháng 2 2017

hỏi câu quá dễ

25 tháng 2 2017

bạn giúp mình nhé

11 tháng 4 2021

4,75 giờ là đúng