cho tam giác ABC có góc A=105 độ, góc B=4 cm. Tính AB?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{C}=180^0-105^0-45^0=30^0\)
Xét ΔABC có \(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)
=>\(\dfrac{AB}{sin30}=\dfrac{4}{sin105}\)
=>\(AB=2\sqrt{6}-2\sqrt{2}\left(cm\right)\)
a, 2 tam giác đồng dạng
CM:
xét tam giác ta có: \(2x+3x+4x=56\)(\(x\)là hệ số sao cho \(2x;3x;4x\)là ba cạnh của tam giác ABC)
=) \(x=6\)
tỉ lệ cạnh thì cậu chứng minh đc 2 tam giác đồng dạng nhé
b,vì hai tam đồng dạng nên
\(\widehat{ABC}=\widehat{DEF}=45^O\)
\(\widehat{BAC}=\widehat{EDF}=105^O\)
tổng 3 góc trong tam giác =180o
thì tính đc \(\widehat{ACB}=\widehat{DFE}=30^O\)
sao khi ra x=6 nhân vào 2x=2.6=12=AB
3x=3.6=18=AC
BC=4x=4.6=24
tỉ lệ cạnh \(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}\)
hay \(\frac{12}{3}=\frac{18}{4,5}=\frac{24}{6}\)
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
a: Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: góc C=180-50-60=70 độ
Xét ΔABC có góc A<góc B<góc C
nên BC<AC<AB
\(\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\prod\limits^{ }_{ }\int_{ }^{ }dx\sinh_{ }^{ }⋮\begin{matrix}&&&\\&&&\\&&&\\&&&\\&&&\\&&&\end{matrix}\right.\Cap\begin{matrix}&&\\&&\\&&\\&&\\&&\\&&\end{matrix}\right.\)
ABH^ = 45* và AHB^ = 90* => AHB là tam giác vuông cân
=> AH = BH (1)
ACH^ = 180* - A^ - B^ = 180* - 105* - 45* = 30*
=> AH = AC/2 => AC = 2AH
BC = CH + BH = 4 => CH = 4 - BH (2)
(1) và (2) => CH = 4 - AH
AC^2 = CH^2 + AH^2
4AH^2 = (4 - AH)^2 + AH^2
4AH^2 = 16 - 8AH^2 + AH^2 + AH^2
<=> 2AH^2 + 8AH - 16 = 0
<=> AH^2 + 4AH - 8 = 0
=> AH = 2(√3 -1)
=> AB^2 = 2AH^2 = 2.4(3 - 2√3 + 1) = 8(4 - 2√3) = 16(2 - √3)
=> AB = 4√(2 - √3)
AC = 2AH = 4(√3 -1)
bạn nên nhớ 2 công thức sau:
+ trong tam giác có góc A = 60độ thì ta có: BC² = AB² + AC² - AC.AB.
+ trong tam giác có góc A = 120độ thì ta có: BC² = AB² + AC² + AC.AB.
Giải: Kẻ đường cao BH của ∆ABC. xét tam giác ABH vuông tại H, có góc BAH = 60độ => góc ABH = 30độ => AB = 2.AH (bổ đề: trong tam giác vuông có góc = 30độ, thì cạnh đối diện với góc 30độ = nửa cạnh huyền - c/m không khó)..
Xét ∆BHC vuông tại H => BC² = BH² + HC² = BH² + (AC - AH)²
= BH² + AH² + AC² - 2.AH.AC
= (BH² + AH²) + AC² - AB.AC (vì AB = 2AH)
= AB² + AC² - AB.AC => ta đã c/m đc. công thức 1. Thay AB = 28cm và AC = 35cm vào ta tính được BC = √1029 (cm) ≈ 32,08 (cm)
Công thức 2 thì cách chứng minh cũng khá giống, cũng kẻ đường cao từ B. Tự chứng minh nha bạn ^^
ỦA SAO GÓC ĐƯỢC TÍNH BẰNG CM(LỚP 7 NÊN KO HỈU, HAY LÀ ĐỀ SAI)