Trong các số sau, số nào là số nguyên:
a. x= căn 7+4 căn 3 + căn 7-4 căn 3
b. y= căn 7 +4 căn 3 - căn 7-4 căn 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{12}{3-\sqrt{3}}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{1}+\dfrac{12\left(3+\sqrt{3}\right)}{6}\)
\(=\sqrt{3}+1-6-3\sqrt{3}+6+2\sqrt{3}\)
\(=1\)
b) Ta có: \(\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\sqrt{7}+\sqrt{5}}-\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{7}+\sqrt{5}-\sqrt{5}-\sqrt{2}+\sqrt{7}-\sqrt{3}\)
=0
Bài 1:
a) \(B=\sqrt{1-4x+4x^2}\)
\(=\sqrt{\left(1-2x\right)^2}\)
\(=\left|1-2x\right|\)
Nếu \(x\le\frac{1}{2}\)thì: \(B=1-2x\)
Nếu \(x>\frac{1}{2}\)thì: \(B=2x-1\)
b) Tại \(x=-7\)thì: \(B=1-2.\left(-7\right)=15\)
a) Ta có: \(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{12}{3-\sqrt{3}}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{1}+\dfrac{12\left(3+\sqrt{3}\right)}{6}\)
\(=\sqrt{3}+1-6-3\sqrt{3}+2\left(3+\sqrt{3}\right)\)
\(=-2\sqrt{3}-5+6+2\sqrt{3}\)
=1
b) Ta có: \(\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\sqrt{7}+\sqrt{5}}-\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{7}+\sqrt{5}-\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{3}\)
\(=\sqrt{2}-\sqrt{3}\)
b: \(\dfrac{3}{\sqrt{7}-2}-\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
\(=\sqrt{7}+2-\sqrt{7}+\sqrt{3}=2+\sqrt{3}\)
6: \(=3\cdot2\sqrt{3}-4\cdot3\sqrt{3}+5\cdot4\sqrt{3}=14\sqrt{3}\)
7: \(=2\sqrt{3}+5\sqrt{3}-4\sqrt{3}=3\sqrt{3}\)
8: \(=2\cdot4\sqrt{2}+4\cdot2\sqrt{2}-5\cdot3\sqrt{2}=\sqrt{2}\)
9: \(=3\cdot2\sqrt{5}-2\cdot3\sqrt{5}+4\sqrt{5}=4\sqrt{5}\)
10: \(=2\cdot2\sqrt{6}-2\cdot3\sqrt{6}+3\sqrt{6}-5\sqrt{6}=-4\sqrt{6}\)
a: Ta có: \(4\sqrt{3a}-3\sqrt{12a}+\dfrac{6\sqrt{a}}{3}-2\sqrt{20a}\)
\(=4\sqrt{3a}-6\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)
\(=-2\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)
a: \(x=2+\sqrt{3}+2-\sqrt{3}=4\)
=>x là số nguyên
b: \(y=2+\sqrt{3}-2+\sqrt{3}=2\sqrt{3}\)
=>y ko là số nguyên