tính
d. \(\sqrt{46+6\sqrt{5}}\)
e. \(\sqrt{9+4\sqrt{2}}\)
f. \(\sqrt{16+2\sqrt{15}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)
\(\Leftrightarrow\left|x+1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
c) \(\sqrt{5+\sqrt{24}}=\sqrt{5+2\sqrt{6}}=\sqrt{3}+\sqrt{2}\)
d) \(\sqrt{12-\sqrt{140}}=\sqrt{12-2\sqrt{35}}=\sqrt{7}-\sqrt{5}\)
f) \(\sqrt{8-\sqrt{28}}=\sqrt{8-2\sqrt{7}}=\sqrt{7}-1\)
g) \(\sqrt{23-4\sqrt{15}}=\sqrt{23-2\cdot\sqrt{60}}=2\sqrt{5}-\sqrt{3}\)
h) \(\sqrt{9+4\sqrt{2}}=\sqrt{\left(2\sqrt{2}+1\right)^2}=2\sqrt{2}+1\)
1: \(=\sqrt{36}=6\)
2: \(=\sqrt{\left(15-9\right)\left(15+9\right)}=\sqrt{24\cdot6}=12\)
3: \(=3\sqrt{5}-1-3\sqrt{5}-1=-2\)
4: \(=3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
5: \(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)=5-4=1\)
Đề thiếu nha:
\(E=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{12+4\sqrt{3}+1}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)(vì \(\sqrt{3}>1\))
\(=\frac{\sqrt{2}.\sqrt{2+\sqrt{3}}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}=\frac{\sqrt{3}+1}{\sqrt{3}+1}=1\)
\(D=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
\(\Rightarrow D\sqrt{2}=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5+2\sqrt{15}+3}+\sqrt{5-2\sqrt{15}+3}-2\sqrt{5-2\sqrt{5}+1}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}-2\sqrt{5}+2=2\)
\(\Rightarrow D=\frac{2}{\sqrt{2}}=\sqrt{2}\)
\(A=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+1+2\sqrt{3.1}}-\sqrt{3+1-2\sqrt{3.1}}\)
\(=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}=|\sqrt{3}+1|-|\sqrt{3}-1|=2\)
\(B=\sqrt{4+5-2\sqrt{4.5}}+\sqrt{4+5+2\sqrt{4.5}}=\sqrt{(\sqrt{4}-\sqrt{5})^2}+\sqrt{(\sqrt{4}+\sqrt{5})^2}\)
\(=|\sqrt{4}-\sqrt{5}|+|\sqrt{4}+\sqrt{5}|=2\sqrt{5}\)
\(C\sqrt{2}=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7+1-2\sqrt{7.1}}-\sqrt{7+1+2\sqrt{7.1}}\)
\(=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}\)
\(=|\sqrt{7}-1|-|\sqrt{7}+1|=-2\Rightarrow C=-\sqrt{2}\)
----------------------------
\(7+4\sqrt{3}=(2+\sqrt{3})^2\Rightarrow 10\sqrt{7+4\sqrt{3}}=10(2+\sqrt{3})\)
\(\Rightarrow \sqrt{48-10\sqrt{7+4\sqrt{3}}}=\sqrt{28-10\sqrt{3}}=\sqrt{(5-\sqrt{3})^2}=5-\sqrt{3}\)
\(\Rightarrow 3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}=3+5(5-\sqrt{3})=28-5\sqrt{3}\)
\(\Rightarrow D=\sqrt{5\sqrt{28-5\sqrt{3}}}\)
https://hoc24.vn/hoi-dap/question/407636.html
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}\)
= 9
~ ~ ~ ~ ~
\(M=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\sqrt{3}-2}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}+1\)
d) \(\sqrt{46+6\sqrt{5}}=\sqrt{45+2\cdot3\sqrt{5}+1}=\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\sqrt{5}+1}=\sqrt{\left(3\sqrt{5}+1\right)^2}=\left|3\sqrt{5}+1\right|=3\sqrt{5}+1\)
e) \(\sqrt{9+4\sqrt{2}}=\sqrt{8+2\cdot2\sqrt{2}+1}=\sqrt{\left(2\sqrt{2}\right)^2+2\cdot2\sqrt{2}+1}=\sqrt{\left(2\sqrt{2}+1\right)^2}=\left|2\sqrt{2}+1\right|=2\sqrt{2}+1\)
f) \(\sqrt{16+2\sqrt{15}}=\sqrt{15+2\sqrt{15}+1}=\sqrt{\left(\sqrt{15}+1\right)^2}=\left|\sqrt{15}+1\right|=\sqrt{15}+1\)
d
\(=\sqrt{45+\sqrt{180}+1}=\sqrt{45+\sqrt{36.5}+1}=\sqrt{45+6\sqrt{5}+1}\\ =\sqrt{\left(\sqrt{45}\right)^2+6\sqrt{5}+1}=\sqrt{\left(\sqrt{45}+1\right)^2}=\sqrt{45}+1\)
e
\(=\sqrt{8+\sqrt{32}+1}=\sqrt{8+\sqrt{4.8}+1}=\sqrt{\left(\sqrt{8}\right)^2+2\sqrt{8}+1^2}=\sqrt{\left(\sqrt{8}+1\right)^2}=\sqrt{8}+1\)
f
\(\sqrt{15+2\sqrt{15}+1}=\sqrt{\left(\sqrt{15}+1\right)^2}=\sqrt{15}+1\)