Mí bạn zúp mình nhá ^-^.Choa,b,c>0.CMR
(1-a/b+c)(1-b/c+a)(1-c/a+b) nhỏ hơn hoặc bằng \(\frac{1}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài toán cực trị có ẩn trong đoạn là pahir cẩn thận này @
\(0\le a,b,c\le1\)\(\Rightarrow a\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow a-ab-a^2+a^2b\ge0\)
\(\Leftrightarrow a^2b\ge ab+a^2-a\)
Tương tự \(b^2c\ge bc+b^2-b;c^2a\ge ca+c^2-c\)
\(\Rightarrow a^2b+b^2c+c^2a+1\ge1+bc+ca+ab-a-b-c+a^2+b^2+c^2\)
\(\ge\left(1-a\right)\left(1-b\right)\left(1-c\right)+abc+a^2+b^2+c^2\ge a^2+b^2+c^2\)
dấu = xảy ra \(\Leftrightarrow\left(a,b,c\right)\in\hept{ }\left(0,1,1\right),\left(0,0,1\right),\left(1,0,1\right)\left(1,1,0\right)\left(0,1,0\right),\left(1,0,0\right)\left\{\right\}\)
Để chứng minh rằng biểu thức abc(1+a^2)(1+b^2)(1+c^2) nhỏ hơn hoặc bằng 8 khi a, b, c là các số dương và a + b + c = 3, chúng ta có thể sử dụng bất đẳng thức AM-GM (bất đẳng thức trung bình cộng - trung bình nhân).
Áp dụng bất đẳng thức AM-GM cho a, b, c ta có: (a + b + c)/3 >= (abc)^(1/3)
Vì a + b + c = 3, ta có: 3/3 >= (abc)^(1/3) 1 >= (abc)^(1/3) 1^3 >= abc 1 >= abc
Tiếp theo, chúng ta cần chứng minh rằng (1 + a^2)(1 + b^2)(1 + c^2) <= 8.
Áp dụng bất đẳng thức AM-GM cho (1 + a^2), (1 + b^2), (1 + c^2) ta có: (1 + a^2 + 1 + b^2 + 1 + c^2)/3 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3)
Vì a^2 + b^2 + c^2 >= 3 (bằng với bất đẳng thức Tchebyshev), ta có: (3 + a^2 + b^2 + c^2)/3 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3) (3 + a^2 + b^2 + c^2)/3 >= (3 + a^2 + b^2 + c^2)/3 1 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3) 1^3 >= (1 + a^2)(1 + b^2)(1 + c^2) 1 >= (1 + a^2)(1 + b^2)(1 + c^2)
Từ hai bất đẳng thức trên, ta có: abc(1 + a^2)(1 + b^2)(1 + c^2) <= 1 * 1 = 1
Do đó, khi a, b, c là các số dương và a + b + c = 3, ta có abc(1 + a^2)(1 + b^2)(1 + c^2) <= 1, và vì 1 nhỏ hơn hoặc bằng 8, nên ta có: abc(1 + a^2)(1 + b^2)(1 + c^2) <= 8.
Vậy, chúng ta đã chứng minh được rằng biểu thức abc(1 + a^2)(1 + b^2)(1 + c^2) nhỏ hơn hoặc bằng 8 khi a, b, c là các số dương và a + b + c = 3.
a,b,c< 0 mà a+b+c bé hơn hoặc bằng 1
a+b+c ít nhất phải bằng 3 chứ!