Rút gọn
\(\dfrac{1}{\sqrt{11-2\sqrt{30}}}-\dfrac{3}{7-2\sqrt{10}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{7-\sqrt{24}}-\dfrac{\sqrt{50}-5}{\sqrt{10}-\sqrt{5}}+\sqrt{\left(11+\sqrt{120}\right)\left(11+2\sqrt{30}\right)^2}\)
\(=\sqrt{7-2\sqrt{6}}-\dfrac{5\left(\sqrt{2}-1\right)}{\sqrt{5}\left(\sqrt{2}-1\right)}+\left|11+2\sqrt{30}\right|\sqrt{11-2\sqrt{30}}\)
\(=\sqrt{1^2-2\sqrt{6}\cdot1+\left(\sqrt{6}\right)^2}-\dfrac{\sqrt{5}\cdot\sqrt{5}}{\sqrt{5}}+\left(11+2\sqrt{30}\right)\sqrt{\left(\sqrt{6}\right)^2-2\sqrt{5}\cdot\sqrt{6}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(1-\sqrt{6}\right)^2}-\sqrt{5}+\left(11+2\sqrt{30}\right)\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}\)
\(=\left|1-\sqrt{6}\right|-\sqrt{5}+\left(11+2\sqrt{30}\right)\left|\sqrt{6}-\sqrt{5}\right|\)
\(=-1+6-\sqrt{5}+\left(\sqrt{6}+\sqrt{5}\right)^2\left(\sqrt{6}-\sqrt{5}\right)\)
\(=\sqrt{6}-1-\sqrt{5}+\left[\left(\sqrt{6}\right)^2-\left(\sqrt{5}\right)^2\right]\left(\sqrt{6}+\sqrt{5}\right)\)
\(=\sqrt{6}-1-\sqrt{5}+\left(6-5\right)\left(\sqrt{6}+\sqrt{5}\right)\)
\(=\sqrt{6}-1-\sqrt{5}+\sqrt{6}+\sqrt{5}\)
\(=2\sqrt{6}-1\)
\(=\sqrt{6+1-2\sqrt{6}}-\dfrac{\sqrt{5}\left(\sqrt{10}-\sqrt{5}\right)}{\sqrt{10}-\sqrt{5}}+\sqrt{\left(11-\sqrt{120}\right)\left(11+\sqrt{120}\right)^2}\\ =\sqrt{\left(\sqrt{6}-\sqrt{1}\right)^2}-\sqrt{5}+\sqrt{\left(11^2-120\right)\left(11+2\sqrt{30}\right)}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{1\left(6+5+2\sqrt{6\cdot5}\right)}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{6}+\sqrt{5}=2\sqrt{6}-\sqrt{1}\)
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
\(\dfrac{1}{\sqrt{11-2\sqrt{30}}}-\dfrac{3}{\sqrt{7-2\sqrt{10}}}+\dfrac{4}{\sqrt{8+4\sqrt{3}}}\)
\(=\dfrac{1}{\sqrt{11-2.\sqrt{6}.\sqrt{5}}}-\dfrac{3}{\sqrt{7-2.\sqrt{5}.\sqrt{2}}}+\dfrac{4}{\sqrt{2\left(4+2\sqrt{3}\right)}}\)
\(=\dfrac{1}{\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}}-\dfrac{3}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)2}}+\dfrac{4}{\sqrt{2\left(\sqrt{3}+1\right)^2}}\)
\(=\dfrac{1}{\sqrt{6}+\sqrt{5}}-\dfrac{3}{\sqrt{5}+\sqrt{2}}+\dfrac{2\sqrt{2}}{\sqrt{3}+1}\)
\(=\dfrac{\sqrt{6}-\sqrt{5}}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}-\dfrac{3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}+\dfrac{2\sqrt{2}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\sqrt{6}-\sqrt{5}+\sqrt{5}-\sqrt{2}+\sqrt{6}-\sqrt{2}=2\sqrt{6}-2\sqrt{2}\)
Đk:\(a>2\)
\(\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{11-a}\right):\left(\dfrac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\dfrac{1}{\sqrt{a-2}}\right)\)
Đặt \(b=\sqrt{a-2}\Leftrightarrow a=b^2+2\)
Biểu thức \(\Leftrightarrow\dfrac{b+2}{3}\left(\dfrac{b}{3+b}+\dfrac{b^2+2+7}{11-b^2-2}\right):\left(\dfrac{3b+1}{b^2-3b}-\dfrac{1}{b}\right)\)
\(=\dfrac{b+2}{3}\left[\dfrac{b}{3+b}-\dfrac{b^2+9}{b^2-9}\right]:\left[\dfrac{3b+1}{b\left(b-3\right)}-\dfrac{b-3}{b\left(b-3\right)}\right]\)
\(=\dfrac{b+2}{3}.\dfrac{b\left(b-3\right)-b^2-9}{\left(b-3\right)\left(3+b\right)}:\dfrac{3b+1-\left(b-3\right)}{b\left(b-3\right)}\)
\(=\dfrac{b+2}{3}.\dfrac{-3\left(b+3\right)}{\left(b-3\right)\left(3+b\right)}.\dfrac{b\left(b-3\right)}{2\left(b+2\right)}\)
\(=-\dfrac{b}{2}\)
\(=\dfrac{\sqrt{a-2}}{-2}\)
Bài 1:
a) Ta có: \(\left(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}}+\sqrt{5}\right)\)
\(=\left(\sqrt{5}+\sqrt{5}-\dfrac{5}{4}\cdot\dfrac{2}{\sqrt{5}}+\sqrt{5}\right)\)
\(=3\sqrt{5}-\dfrac{1}{2}\sqrt{5}\)
\(=\dfrac{5}{2}\sqrt{5}\)
c) Ta có: \(\dfrac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
\(=\dfrac{\sqrt{35}\left(\sqrt{5}-\sqrt{7}+2\sqrt{2}\right)}{\sqrt{35}}\)
\(=2\sqrt{2}+\sqrt{5}-\sqrt{7}\)
Bài 2:
e) ĐKXĐ: \(\dfrac{4}{3}\le x\le6\)
Ta có: \(\sqrt{6-x}=3x-4\)
\(\Leftrightarrow6-x=\left(3x-4\right)^2\)
\(\Leftrightarrow9x^2-24x+16+6-x=0\)
\(\Leftrightarrow9x^2-25x+22=0\)
\(\Delta=\left(-25\right)^2-4\cdot9\cdot22=625-792< 0\)
Vậy: Phương trình vô nghiệm
Bài 1:
\(D=\dfrac{1}{2}\sqrt{48}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}=\dfrac{1}{2}.4\sqrt{3}-\sqrt{3}+5.\dfrac{2\sqrt{3}}{3}=2\sqrt{3}-\sqrt{3}+\dfrac{10\sqrt{3}}{3}=\dfrac{3\sqrt{3}+10\sqrt{3}}{3}=\dfrac{13\sqrt{3}}{3}\)
\(E=\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{9-5}}-\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{9-5}}=\dfrac{3-\sqrt{5}}{2}-\dfrac{3+\sqrt{5}}{2}=-\sqrt{5}\)
\(F=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}=\sqrt{\left(\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}\right)^2}+\sqrt{\left(\dfrac{3}{\sqrt{2}}-\sqrt{\dfrac{5}{2}}\right)^2}-\sqrt{2}=\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}+\dfrac{3}{\sqrt{2}}-\sqrt{\dfrac{5}{2}}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}\)
Bài 2:
Ta có: G-1
\(=\dfrac{\sqrt{x}-x+\sqrt{x}-1}{x-\sqrt{x}+1}\)
\(=\dfrac{-\left(x-2\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)
\(=\dfrac{-\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}\le0\forall x\) thỏa mãn ĐKXĐ
hay \(G\le1\)
a)
\(\left(\dfrac{3+2\sqrt{3}}{\sqrt{3}+2}-\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\right)\left(\sqrt{3}+\sqrt{2}\right)\\ =\left(\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\left(\sqrt{3}+2\right)}-\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\left(\sqrt{2}+1\right)}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\\ =3-2\\ =1\)
b)
\(\left(2+\dfrac{11-\sqrt{11}}{1-\sqrt{11}}\right)\left(2+\dfrac{\sqrt{11}+11}{\sqrt{11}+1}\right)\\ =\left(2+\dfrac{\sqrt{11}\left(\sqrt{11}-1\right)}{-\left(\sqrt{11}-1\right)}\right)\left(2+\dfrac{\sqrt{11}\left(1+\sqrt{11}\right)}{\sqrt{11}+1}\right)\\ =\left(2-\sqrt{11}\right)\left(2+\sqrt{11}\right)\\ =4-11\\ =-7\)
a: \(=\left(\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{2+\sqrt{3}}-\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
=(căn 3-căn 2)(căn 3+căn 2)
=3-2=1
b: \(=\left(2-\dfrac{\sqrt{11}\left(\sqrt{11}-1\right)}{\sqrt{11}-1}\right)\left(2+\dfrac{\sqrt{11}\left(\sqrt{11}+1\right)}{\sqrt{11}+1}\right)\)
=(2-căn 11)(2+căn 11)
=4-11
=-7
j.
\(J=\left[\frac{1}{\sqrt{(\sqrt{5}-\sqrt{2})^2}}-\frac{\sqrt{2}}{\sqrt{2}(\sqrt{5}+\sqrt{2})}+1\right].\frac{1}{(\sqrt{2}+1)^2}\)
\(=\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right).\frac{1}{(\sqrt{2}+1)^2}\)
\(=[\frac{\sqrt{5}+\sqrt{2}-(\sqrt{5}-\sqrt{2})}{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})}+1].\frac{1}{(\sqrt{2}+1)^2}=(\frac{2\sqrt{2}}{3}+1).\frac{1}{(\sqrt{2}+1)^2}=\frac{3+2\sqrt{2}}{3}.\frac{1}{3+2\sqrt{2}}=\frac{1}{3}\)
k. Đề sai sai, bạn xem lại
o.
\(O=(4+\sqrt{15})(\sqrt{5}-\sqrt{3}).\sqrt{2}.\sqrt{4-\sqrt{15}}\)
\(=(4+\sqrt{15}(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})=(4+\sqrt{15})(8-2\sqrt{15})\)
\(=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)
Câu 1,2 bạn đã đăng và có lời giải rồi
Câu 3:
\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{\sqrt{3}-2\sqrt{5}}{\sqrt{2}}\)
\(=\dfrac{1}{\sqrt{11-2\sqrt{5}.\sqrt{6}}}-\dfrac{3\left(7+2\sqrt{10}\right)}{\left(7-2\sqrt{10}\right)\left(7+2\sqrt{10}\right)}\\ =\dfrac{1}{\sqrt{\left(\sqrt{5}-\sqrt{6}\right)^2}}-\dfrac{3\left(7+2\sqrt{10}\right)}{49-40}\\ =\dfrac{1}{\left|\sqrt{5}-\sqrt{6}\right|}-\dfrac{7+2\sqrt{10}}{3}\\ =\dfrac{1}{\sqrt{6}-\sqrt{5}}-\dfrac{7+2\sqrt{10}}{3}\\ =\dfrac{\sqrt{6}+\sqrt{5}}{6-5}-\dfrac{7+2\sqrt{10}}{3}\\ =\sqrt{6}+\sqrt{5}+\dfrac{7+2\sqrt{10}}{3}\\ =\dfrac{3\sqrt{6}+3\sqrt{5}+7+2\sqrt{10}}{3}\)
\(=\dfrac{1}{\sqrt{6}-\sqrt{5}}+\dfrac{7+2\sqrt{10}}{3}\)
\(=\sqrt{6}+\sqrt{5}+\dfrac{7}{3}+\dfrac{2}{3}\sqrt{10}\)