K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Tự vẽ hình nha !

Xét tam giác đều ABC có :

\(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)

Xét tam giác đều MDC có :

\(\widehat{DMC}=\widehat{MCD}=\widehat{CDM}=60^0\)

Ta có :

Góc ACB = ACM + MCB = 600

Góc MCD = MCB + BCD = 600

=> Góc ACM = Góc BCD

Xét tam giác ACM và tam giác BCD có :

AC = BC

CD = CM                        => tam giác ACM = tam giác BCD  

Góc ACM = Góc BCD 

19 tháng 5 2017

bcd gioi chua em la lop 4 do

20 tháng 5 2017

Tự vẽ hình đi , có bài đó mà cũng phải lên đây hỏi !!!

a) Xét tam giác đều ABC có :

\(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)

Xét tam giác đều MBD có :

\(\widehat{M}=\widehat{D}=\widehat{B}=60^0\)

Ta có :

\(\widehat{ACB}=\widehat{ACM}+\widehat{MCB}=60^0\)

\(\widehat{MCD}=\widehat{BCD}+\widehat{MCB}=60^0\)

=> \(\widehat{ACM}=\widehat{BCD}\)

Xét tam giác ACM và tam giác CBD có :

AC = BC (tam giác ABC đều)

CD = CM (tam giác CMD đều) => Tam giác ACM = tam giác CBD

\(\widehat{ACM}=\widehat{BCD}\)

b) Từ chứng minh tam giác trên , ta có :

BD = AM = 1cm

\(\widehat{AMC}=\widehat{BDC}\)

Xét tam giác BDM ta có :

AM = 1 = BD

BM = \(\sqrt{3}\) (Vì nó là CẠNH của một HÌNH VUÔNG có S = 3cm2)

MC = MD

Ta có :

BD2 + BM2 = 1 + 3 = 4 = MD2 = 4

=> Tam giác BMD cân tại B

21 tháng 8 2018

a, Xét \(\Delta ACM\)và \(\Delta BCD\)có :

MC = DC ( gt )

\(\widehat{ACM}\)\(\widehat{DCB}\)( cx cộng vs \(\widehat{MCB}\)

BC=Ac ( gt )

=> \(\Delta ACM=\Delta BCD\left(c-g-c\right)\)

b, \(BM.BM=3cm^2\)

\(\Rightarrow BM=\sqrt{3}\)

AD t/c Pi ta- go đảo, ta có :

\(MD^2=BM^2+BD^2\)

22 =  \(\left(\sqrt{3}\right)^2+1^2\)

4 = 3 + 1 \(\Rightarrow\Delta MBD\)vuông

c, Xét \(\Delta BMD\)vuông tại B, ta có :

BD = \(\frac{1}{2}MD\)

\(\Rightarrow\widehat{BMD}\)= 30o ,  \(\widehat{CMD}\)= 60o ( vì \(\Delta CMD\)đều )

Ta có : \(\widehat{BMD}\)\(\widehat{CMD}\) = \(\widehat{BMC}\)

30o + 60o = 90o

Vì \(\Delta MDC\)đều  \(\Rightarrow\widehat{MDC}\)= 60o

Ta có : \(\widehat{MBD}\)\(\widehat{BDM}\)\(\widehat{DMB}\)= 180o ( tổng 3 góc trong 1 \(\Delta\)

90o + \(\widehat{BDM}\)+ 30o = 180o

\(\widehat{BDM}\)= 60o

Mà \(\widehat{MDC}\)\(\widehat{BDM}\)= 60o + 60o = 120o

lại có : \(\Delta CAM=\Delta CBD\)(câu a ) => \(\widehat{AMC}\)= 120o

Ta có : \(\widehat{AMB}\)\(\widehat{BMC}\)\(\widehat{AMC}\)= 360o

\(\widehat{AMB}\)+ 90o + 120o = 360o

\(\widehat{AMB}\)= 1500

Mà \(\widehat{AMB}\)\(\widehat{BMD}=150^o+30^o=180^o\)

\(\Rightarrow\widehat{AMD}\)là góc bẹt

=> A, M,D thẳng hàng

d, Xét \(\Delta BMC\)vuông

BC2 = BM2 + MC2

       = \(\left(\sqrt{3}\right)^2+4\)

       = 7

=> \(BC=\sqrt{7}\)

Shv có cạnh BC là \(\sqrt{7}.\sqrt{7}=7\)

a: Xét ΔABM và ΔACM có

AB=AC

AM chug

BM=CM

Do đó: ΔABM=ΔACM

b:

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Xét ΔAMC vuông tại M và ΔBMD vuông tại M có 

MC=MD

MA=MB

Do đó: ΔAMC=ΔBMD

Suy ra: AC=BD

c: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của CB

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

d: Xét tứ giác ABCI có

AI//BC

AI=BC

Do đó: ABCI là hình bình hành

Suy ra: CI//AB

mà CD//AB

và CI,CD có điểm chung là C

nên C,I,D thẳng hàng