a) Vẽ góc vuông đỉnh A; cạnh AB, AC.
b) Vẽ đường tròn tâm I.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì tam giác ABC có AB=AC
=> ∆ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\)
b) Ta có: \(\left\{{}\begin{matrix}\widehat{ABE}+\widehat{ABC}=180^o\\\widehat{ACD}+\widehat{ACD}=180^o\end{matrix}\right.\)
Mà \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Lại có: \(\widehat{EAB}+\widehat{BAC}=90^o\)
\(\widehat{DAC}+\widehat{CAB}=90^o\)
=> \(\widehat{EAB}=\widehat{DAC}\)
Xét ∆EAB và ∆DAC:
AB=AC(gt)
\(\widehat{EAB}=\widehat{DAC}\left(cmt\right)\)
\(\widehat{ABE}=\widehat{ACD}\left(cmt\right)\)
=> ∆EAB=∆DAC(g.c.g)
=> EB=CD(2 cạnh t/ứ)
=> EB+BC=DC+BC
=> EC=BD
=> Đpcm
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)
a. Góc vuông , cạnh góc vuông là:
- Đỉnh B cạnh BA, BD
- Đỉnh D cạnh DB, DC
b. Góc , cạnh không vuông là:
- Đỉnh A cạnh AB, AC
- Đỉnh C cạnh CA , CD
- Đỉnh M cạnh MA , MN
- Đỉnh M cạnh MB, MN
- Đỉnh N cạnh NM , NC
- Đỉnh N cạnh NM , ND
Câu a do AB = AC nên tam giác ABC cân ở A nên góc ACB = ABC
câu b do EAB + BAC = DAC + BAC ( = 90 độ )
nên CAD = BAE mà ACB = ABC chứng minh trên nên ACD = ABE
mà AC = AB nên tam giác ACD = tam giác ABE ( g - c - g )
=> BD =CE 2 cạnh tương ứng
a) Em sử dụng ê-ke để vẽ được góc vuông đỉnh A, cạnh AB, AC.
b) Em sử dụng com-pa để vẽ đường tròn tâm I.