K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

U=567890 T=123456F21`

29 tháng 7 2017

bạn ơi , sai đề hay sao á :

ta có

C+P=C  suy ra P=0

mà bạn lại bảo P là số tự nhiên khác 0 thế là sai òi

bạn bình chọn cho mik nha

30 tháng 1 2016

a+m=a+b+c

m= 2 x a+b+c

b+n=a+b+c

n=a+2 x b+c

m+n=3 x a+3 x b+2 x c

c+p=a+b+c

p=a+b+2 x c

3 x a+3 x b+2 x c > a+b+2 x c.

Những cái còn lại tương tự!

a: cos N=1/2

=>góc N=60 độ

góc M=90-60=30 độ

Xét ΔMNP vuông tại P có sin M=PN/NM

=>PN/8=sin30=1/2

=>PN=4cm

=>\(PM=\sqrt{8^2-4^2}=4\sqrt{3}\left(cm\right)\)

b: Xét ΔNMP vuông tại P có sin N=0,6=3/5

=>PM/MN=3/5

=>5/MN=3/5

=>MN=25/3

PN=căn (25/3)^2-5^2=20/3(cm)

Xét ΔNMP vuông tại P có sinN=3/5

nên góc N\(\simeq37^0\)

=>\(\widehat{M}\simeq90^0-37^0=53^0\)

c: Xét ΔMNP vuông tại P có tan N=căn 3

=>PM/PN=căn 3

=>6/PN=căn 3

=>PN=2*căn 3(cm)

MN=căn (2*căn 3)^2+6^2=4*căn 3

Xét ΔMNP vuông tại P có tan N=căn 3

nên góc N=60 độ

=>góc M=30 độ

26 tháng 8 2021

1.

Ta có thể đưa ra nhiều bộ ba số thỏa mãn yêu cầu bài toán như sau:

+ Ví dụ 1. Các số 7; 9 và 2.

Ta có 7 không chia hết cho 2 và 9 cũng không chia hết cho 2 nhưng 7 + 9 = 16 lại chia hết cho 2. 

+ Ví dụ 2. Các số 13; 19 và 4. 

Ta có 13 không chia hết cho 4 và 19 cũng không chia hết cho 4 nhưng 13 + 19 = 32 lại chia hết cho 4. 

+ Ví dụ 3. Các số 33; 67 và 10.

Ta có 33 không chia hết cho 10 và 67 cũng không chia hết cho 10 nhưng 33 + 67 = 100 lại chia hết cho 10. 

Tương tự, các em có thể đưa ra các bộ ba số khác nhau thỏa mãn yêu cầu bài toán. 

Qua bài tập 6 này, ta rút ra nhận xét như sau: 

Nếu m chia hết cho p và n chia hết cho p thì tổng m + n chia hết cho p nhưng điều ngược lại chưa chắc đã đúng. 

Nếu tổng m + n chia hết cho p thì chưa chắc m chia hết cho p và n chia hết cho p. 

2.

Vì (a+b)⋮ma+b  ⋮  m nên ta có số tự nhiên k (k≠0)k≠0 thỏa mãn a + b = m.k (1)

Tương tự, vì a⋮ma  ⋮ m nên ta cũng có số tự nhiên h(h≠0)h≠0 thỏa mãn a = m.h 

Thay a = m. h vào (1) ta được: m.h + b = m.k 

Suy ra b = m.k – m.h = m.(k – h)  (tính chất phân phối của phép nhân với phép trừ).

Mà m⋮mm⋮m nên theo tính chất chia hết của một tích ta có   m(k−h)⋮mmk-h  ⋮  m

Vậy b⋮m.b  ⋮  m.