giải phương trình \(\sqrt{2x-1}+\sqrt{19-2x}=\frac{6}{-x^2+10x_{ }+24}\)Cần giải gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(VT=\sqrt{3x^2-6x+19}+\sqrt{x^2-2x+26}\)
\(=\sqrt{3\left(x-1\right)^2+16}+\sqrt{\left(x-1\right)^2+25}\ge4+5=9\)
\(VP=8-x^2+2x=9-\left(x-1\right)^2\le9\)
Dấu = xảy ra khi \(x=1\)
ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\-\dfrac{3}{2}\le x\le-1\end{matrix}\right.\)
\(\left(x^2+2x+1\right)+\left(2x+3-2\sqrt{2x+3}+1\right)+\sqrt{x^2-1}=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2+\sqrt{x^2-1}=0\)
Do \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(\sqrt{2x+3}-1\right)^2\ge0\\\sqrt{x^2-1}\ge0\end{matrix}\right.\) với mọi x thuộc TXĐ
\(\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(\sqrt{2x+3}-1\right)^2=0\\\sqrt{x^2-1}=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
Vậy pt có nghiệm duy nhất \(x=-1\)
Điều kiện \(\begin{cases}x-1\ge0\\19-x\ge0\end{cases}\) \(\Leftrightarrow\) \(x\in\left[1;19\right]\)
Ta thấy ngay phương trình có nghiệm x=10
Nghiệm này thuộc \(\left[1;19\right]\)
Mặt khác, đặt \(f\left(x\right)=x^2+2x+\sqrt{x-1}\)
\(g\left(x\right)=\frac{1000}{x}+\sqrt{19-x}+20\)
Ta dễ dàng kiểm tra \(f\left(x\right)\) là hàm số đồng biến, \(g\left(x\right)\) là hàm số dị biến trên \(\left[1;19\right]\)
Vậy \(x=10\) là nghiệm duy nhất của phương trình
đánh giá đi bạn
\(\frac{6}{-x^2+10x-24}=\frac{6}{1-\left(x-5\right)^2}\ge6\)