\(\frac{1}{6}+\frac{2}{15}+\frac{4}{15}+\frac{2}{99}+\frac{9}{220}+\frac{10}{600}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2004\cdot2005}+\frac{1}{2005\cdot2006}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2005}-\frac{1}{2006}\)
\(A=1-\frac{1}{2006}=\frac{2005}{2006}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2005.2006}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(\Rightarrow A=1-\frac{1}{2006}\)
\(\Rightarrow A=\frac{2005}{2006}\)
Để nhân các phân số này, ta chỉ cần nhân tử số với nhau và mẫu số với nhau:
\[
\frac{1}{3} \times \frac{2}{5} \times \frac{3}{7} \times \frac{4}{9} \times \frac{5}{11} \times \frac{6}{15} \times \frac{7}{15} \times \frac{8}{15} \times \frac{9}{19} \times \frac{10}{21} \times \frac{11}{32} \times \frac{12}{25} \times \left( \frac{126}{252} - 4 \right)
\]
Sau đó, ta thực hiện các phép tính:
1. Nhân tử số:
\[1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 126 = 997920\]
2. Nhân mẫu số:
\[3 \times 5 \times 7 \times 9 \times 11 \times 15 \times 15 \times 15 \times 19 \times 21 \times 32 \times 25 \times 252 = 7621237680\]
Kết quả là:
\[\frac{997920}{7621237680}\]
Bây giờ, ta có thể rút gọn phân số này bằng cách chia tử số và mẫu số cho 160:
\[ \frac{997920}{7621237680} = \frac{997920 ÷ 160}{7621237680 ÷ 160} = \frac{6237}{47695230} \]
2, \(\frac{10}{1.2.3}+\frac{10}{2.3.4}+\frac{10}{3.4.5}+....+\frac{10}{100.101.102}\)
\(=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{102-100}{100.101.102}\)
\(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{100.101}-\frac{1}{101.102}\right)\)
\(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{101.102}\right)\)
\(=\frac{10}{2}.\frac{2575}{5151}\)
\(=2,499514657\)
ta gọi \(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\)là A
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(\Leftrightarrow1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(\Rightarrow A=1-\frac{1}{10}=\frac{9}{10}\)
ta gọi B là biểu thức thứ2
\(B=\frac{2.2}{3}\times\frac{3.3}{2.4}\times\frac{4.4}{3.5}\times...\times\frac{10.10}{9.11}\)
\(\Rightarrow\)2 x \(\frac{10}{11}\)\(=\frac{20}{11}\)
\(\Rightarrow\)\(x+\frac{9}{10}=\frac{20}{11}+\frac{9}{110}\)
\(\Rightarrow x=1\)
mk nghĩ vậy bạn ạ, mk mong nó đúng
a) \(\frac{11}{15}+\frac{5}{7}+\frac{2}{7}+\frac{4}{15}=\left(\frac{11}{15}+\frac{4}{15}\right)+\left(\frac{5}{7}+\frac{2}{7}\right)\)
\(=2\)
b) \(\frac{5}{9}\times\frac{1}{2}\times\frac{5}{9}\times\frac{6}{4}=\frac{25}{81}\times\frac{3}{4}=\frac{25}{108}\)
c) \(\frac{7}{8}\div\frac{1}{2}+\frac{9}{8}\div\frac{1}{2}=\left(\frac{7}{8}+\frac{9}{8}\right)\div\frac{1}{2}\)
\(=2\div\frac{1}{2}=4\)
d) \(\frac{17}{10}+\frac{1}{2}-\frac{7}{10}=\left(\frac{17}{10}-\frac{7}{10}\right)+\frac{1}{2}\)
\(=1+\frac{1}{2}=\frac{3}{2}\)
a) \(\frac{11}{15}+\frac{5}{7}+\frac{2}{7}+\frac{4}{15}\)
\(=\left(\frac{11}{15}+\frac{4}{15}\right)+\left(\frac{5}{7}+\frac{2}{7}\right)\)
\(=1+1\)
\(=2\)
b) \(\frac{5}{9}.\frac{1}{2}.\frac{5}{9}.\frac{6}{4}\)
\(=\left(\frac{5}{9}\right)^2\left(\frac{1}{2}.\frac{6}{4}\right)\)
\(=\frac{25}{81}.\frac{3}{4}\)
\(=\frac{25}{108}\)
c) \(\frac{7}{8}:\frac{1}{2}+\frac{9}{8}:\frac{1}{2}\)
\(=\frac{7}{8}.2+\frac{9}{8}.2\)
\(=2\left(\frac{7}{8}+\frac{9}{8}\right)\)
\(=2.\frac{16}{8}\)
\(=2.2\)
\(=4\)
d) \(\frac{17}{10}+\frac{1}{2}-\frac{7}{10}\)
\(=\left(\frac{17}{10}-\frac{7}{10}\right)+\frac{1}{2}\)
\(=1+\frac{1}{2}\)
\(=\frac{2}{2}+\frac{1}{2}\)
\(=\frac{3}{2}\)
a,(11/15+4/15)+(5/7+2/7)
=1+1
=2
b,5/9x(1/2+6/4)
=5/9x2
=10/9
c,1/2:(7/8+9/8)
=1/2:2
=1
d,(17/10-7/10)+1/2
=1+1/2
=3/2
1/6 + 2/15 + 4/15 + 2/99 + 9/220 + 10/600
=( 1/6 + 1/60) + (2/15 + 4/15) + 2/99 + 9/220
=11/60 + 2/5 + 11/180
=7/12 + 11/180
=29/45
\(=\left(\frac{1}{6}+\frac{1}{60}\right)+\left(\frac{2}{15}+\frac{4}{15}\right)+\frac{2}{99}+\frac{9}{220}\)
\(=\frac{11}{60}+\frac{2}{5}+\frac{11}{180}=?\)
\(=\frac{7}{12}+\frac{11}{180}=?\)
\(=\frac{29}{45}.\)