Một đội xe điều một số xe đến kho chở 21 tấn hàng . Khi đến kho có một xe hỏng nên mỗi xe còn lại phải chở thêm 0,5 tấn so với dự định . Hỏi số xe đội điều đến lúc đầu là bao nhiêu ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số xe lúc đầu là x (xe) (x > 1)
Số tấn hàng mỗi xe phải chở theo dự định là: $\frac{21}{x}$21x 21/xtấn
Thực tế có (x - 1) xe => Mỗi xe phải chở : $\frac{21}{x-1}$21x−1 21/x-1 tấn
Theo bài cho : Mỗi xe chở thêm so vơi dự định là 0,5 tấn nên ta có phương trình:
$\frac{21}{x-1}$21x−1 $\frac{21}{x}$21x 21/x-1=21/x + 0,5
=> 21x = 21(x - 1) + 0,5x.(x - 1)
<=> 0,5x2 - 0,5x - 21 = 0
<=> x2 - x - 42 = 0 <=> x2 - 7x + 6x - 42 = 0
<=> (x - 7).(x+6) = 0 <=> x = 7 hoặc x = - 6 (Loại)
Vậy có 7 xe lúc đầu
Gọi số xe lúc đầu là x (xe) (x > 1)
Số tấn hàng mỗi xe phải chở theo dự định là: \(\frac{21}{x}\) tấn
Thực tế có (x - 1) xe => Mỗi xe phải chở : \(\frac{21}{x-1}\) tấn
Theo bài cho : Mỗi xe chở thêm so vơi dự định là 0,5 tấn nên ta có phương trình:
\(\frac{21}{x-1}\)=\(\frac{21}{x}\) + 0.5
=> 21x = 21(x - 1) + 0,5x.(x - 1)
<=> 0,5x2 - 0,5x - 21 = 0
<=> x2 - x - 42 = 0 <=> x2 - 7x + 6x - 42 = 0
<=> (x - 7).(x+6) = 0 <=> x = 7 hoặc x = - 6 (Loại)
Vậy có 7 xe lúc đầu
Gọi x(xe) là số xe ban đầu(Điều kiện: \(x\in Z^+\))
Ban đầu mỗi xe phải chở là: \(\dfrac{21}{x}\)(tấn)
Theo đề, ta có phương trình: \(\dfrac{21}{x-1}-\dfrac{1}{2}=\dfrac{21}{x}\)
\(\Leftrightarrow\dfrac{42x}{2x\left(x-1\right)}-\dfrac{x\left(x-1\right)}{2x\left(x-1\right)}=\dfrac{42\left(x-1\right)}{2x\left(x-1\right)}\)
Suy ra: \(42x-x^2+x=42x-42\)
\(\Leftrightarrow-x^2+41x-42x+42=0\)
\(\Leftrightarrow x^2-x-42=0\)
\(\Leftrightarrow x^2-7x+6x-42=0\)
\(\Leftrightarrow x\left(x-7\right)+6\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-6\left(loại\right)\end{matrix}\right.\)
Vậy: Lúc đầu có 7 xe
Gọi x (xe) là số xe mà công ty đã điều đến ban đầu (x>1).
Theo dự định, mỗi xe chở 21/x tấn hàng.
21/x tấn hàng của xe bị hỏng chia đều cho x-1 xe còn lại, mỗi xe được 0,5 tấn, ta có phương trình:
21/x:(x-1)=0,5 \(\Rightarrow\) \(\left\{{}\begin{matrix}x=7\left(nhận\right)\\x=-6\left(loại\right)\end{matrix}\right.\).
Vậy: ban đầu công ty đã điều đến kho hàng 7 xe.
Lời giải:
Giả sử số xe ban đầu dự định là $a$. ĐK: $a\in\mathbb{N}^*$.
Mỗi xe chở $\frac{90}{a}$ tấn hàng.
Theo bài ra ta có: 90=(a-2)(\frac{90}{a}+0,5)$
$\Leftrightarrow \frac{a}{2}-\frac{180}{a}-1=0$
$\Leftrightarrow a^2-2a-360=0$
$\Leftrightarrow (a-20)(a+18)=0$
Vì $a$ là số tự nhiên nên $a=20$
Gọi số xe đã điều khiển đến kho hàng lúc đầu là :x(xe,x thuộc u,x>1)
Nên số xe thực tế cho hàng là :x-1 xe;
Dự định mỗi xe chở 21/x tấn hàng
hàng
Thực tế mỗi xe phải chở thêm 0,5 tấn so với dự dih ban đầu nên :
21/x-1-21/x=0,5
Suy ra :x^2 - x -42 =0
<=>=7 (thỏa mãn x thuộc u ,x > 1) \(x_2\)= -6 loai
Vậy số xe lúc ban đầu là 7 xe
Lời giải:
Giả sử dự định dùng $x$ xe để chở 30 tấn hàng. Khi đó, mỗi xe theo kế hoạch chở $\frac{30}{x}$ tấn hàng.
Một xe bị hỏng => còn $x-1$ xe. Mỗi xe chở: $\frac{30}{x}+\frac{1}{8}$ tấn hàng.
Tổng số hàng chở:
$(x-1)(\frac{30}{x}+\frac{1}{8})=30$
$\Leftrightarrow x(x-1)=240$
$\Leftrightarrow (x-16)(x+15)=0$
$\Rightarrow x=16$ (do $x>0$)
Vậy.....
Gọi số xe lúc đầu là x (xe) (x > 1)
Số tấn hàng mỗi xe phải chở theo dự định là: \(\frac{21}{x}\) tấn
Thực tế có (x - 1) xe => Mỗi xe phải chở : \(\frac{21}{x-1}\) tấn
Theo bài cho : Mỗi xe chở thêm so vơi dự định là 0,5 tấn nên ta có phương trình:
\(\frac{21}{x-1}\) = \(\frac{21}{x}\) + 0,5
=> 21x = 21(x - 1) + 0,5x.(x - 1)
<=> 0,5x2 - 0,5x - 21 = 0
<=> x2 - x - 42 = 0 <=> x2 - 7x + 6x - 42 = 0
<=> (x - 7).(x+6) = 0 <=> x = 7 hoặc x = - 6 (Loại)
Vậy có 7 xe lúc đầu