K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2017

Từ c(b+d)=2bd=>bc+cd=2bd

Ta lại có             a+c =2b

Lấy vế chia vế được :\(\frac{bc+cd}{a+c}=\frac{2bd}{2b}=\)\(d\)

=>bc+cd=ad+cd=>bc=ad=>\(\frac{a}{b}=\frac{c}{d}\)

+ , \(\frac{a}{b}=\frac{c}{d}\)\(\frac{a+c}{b+d}\)=> \(\left(\frac{a+c}{b+d}\right)^8=\left(\frac{a}{b}\right)^8\)\(\frac{a^8}{b^8}\) (1)

\(\frac{a}{b}=\frac{c}{d}\)=> \(\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8\)<=>\(\frac{a^8}{b^8}=\frac{c^8}{d^8}\)=\(\frac{a^8+c^8}{b^8+d^8}\) (2)

Từ (1) và (2) ta suy ra : \(\left(\frac{a+c}{b+d}\right)^8=\frac{a^8+c^8}{b^8+d^8}\) ( đpcm)

26 tháng 7 2019

Bạn ơi bạn vô câu hỏi tương tự xem nhé

Học tốt

26 tháng 7 2019

Tham khảo nhé!

>>https://olm.vn/hoi-dap/detail/80507618602.html

Từ \(c\left(b+d\right)=2bd\Rightarrow b+d=\frac{2ab}{c}\)

Viết : \(\frac{a+c}{b+d}=\frac{2ab}{2bd}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

Đến đây bn chỉ cần biến đổi để có điều phải chứng minh 

hc tốt 

19 tháng 8 2019

tròi oi bn cứu mk rồi :(( 

cám ơn ơn bn nhiều lắm khi nào có bài khó mk sẽ nhờ bn giúp ạ !!!

4 tháng 1 2016

Vì \(a+c=2b;dc+bc=2bd\Rightarrow\frac{dc+bc}{a+c}=\frac{2bd}{2b}=d\)

\(\Rightarrow bc+dc=\left(a+c\right)d=ad+dc\Rightarrow bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\left(\frac{a+c}{b+d}\right)^8=\left(\frac{a}{b}\right)^8\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8=\frac{a^8+c^8}{b^8+d^8}\)

\(\Rightarrow\left(\frac{a+b}{c+d}\right)^8=\frac{a^8+b^8}{c^8+d^8}\)

23 tháng 7 2017

Ta có:

\(c.\left(b+d\right)=2bd\)

\(\Rightarrow bc+cd=2bd\)

Lại có: \(a+c=2b\)

Lấy vế chia vế được: \(\dfrac{bc+cd}{a+c}=\dfrac{2bd}{2b}=d\)

\(\Rightarrow bc+cd=ad+cd\)

\(\Rightarrow bc=ad\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

* \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\left(\dfrac{a+c}{b+d}\right)^8=\left(\dfrac{a}{b}\right)^8=\dfrac{a^8}{b^8}\left(1\right)\)

* \(\dfrac{a}{b}=\dfrac{c}{d}=\left(\dfrac{a}{b}\right)^8=\left(\dfrac{c}{d}\right)^8\)

\(\Rightarrow\dfrac{a^8}{b^8}=\dfrac{c^8}{d^8}=\dfrac{a^8+c^8}{b^8+d^8}\left(2\right)\)

Từ (1) và (2) suy ra:

\(\left(\dfrac{a+c}{b+d}\right)^8=\dfrac{a^8+c^8}{b^8+d^8}\left(đpcm\right)\)

23 tháng 8 2017

Bạn ko nói rõ lớp mấy để đưa ra cách giải phù hợp. 
1) Gọi chữ số hàng đơn vị là x (0 < x <9) => chữ số hàng chục là 3x 
Số ban đầu có dạng 10.3x + x = 31x 
Sau khi đổi chỗ số mới có dạng 10.x + 3x = 13x 
Vì số mới nhỏ hơn số đã cho 18 nên có pt 31x - 13x = 18 <=> 18x = 18 => x = 1 (TMĐK) 
Suy ra chữ số hàng chục là 3. Vậy số cần tìm là 31. 
2) Tóm tắt thôi nhé. 
Chữ số hàng chục là a, hàng đơn vị là b. => Số có dạng 10a + b và a+ b = 10 
Số mới sau khi đổi chỗ là 10b + a 
Giải hệ 2 pt: a + b = 10 và (10a + b) - (10b + a) = 36 
được a = 7; b = 3. Vậy số cần tìm là 73. 
3) Gọi a là số tự nhiên sau khi đã xóa đi 5. Số ban đầu là 10a + 5 
xóa chữ số 5 thì số ấy giảm đi 1787 đơn vị nên ta có pt : 10a + 5 - 1787 = a 
=> 9a = 1782 => a = 198 => Số ban đầu là 1985

28 tháng 8 2020

Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)

Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)

 Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)

Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\)\(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)

Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\)\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)