K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc DMC+góc AMC=180 độ

góc ABC+góc AMC=180 độ

=>góc DMC=góc ABC

b: AC=BC

mà góc NAC=góc NBC và NC chung

nên ΔAMC=ΔBNC

=>MC=NC

25 tháng 5 2021

1: Ta có \(\widehat{CDE}=\widehat{CNE}=90^o\) nên tứ giác CDNE nội tiếp đường tròn đường kính CE.

2: Xét tam giác \(BKD\) và tam giác \(EKM\) có: \(\widehat{BKD}=\widehat{EKM}\) (đối đỉnh), \(\widehat{BDK}=\widehat{EMK}\) (= \(90^o\))

Do đó \(\Delta BKD\sim\Delta EKM(g.g)\).

Suy ra \(\dfrac{KB}{KD}=\dfrac{KE}{KM}\Rightarrow KB.KM=KE.KD\).

Do K là trực tâm của tam giác BCE nên C, K, N thẳng hàng.

3: Ta có \(\widehat{FNK}=\dfrac{1}{2}sđ\stackrel\frown{NC}=\widehat{NBC}=90^o-\widehat{BED}=\widehat{NKF}\). Suy ra tam giác NKF cân tại F nên FN = FK. Lại có tam giác ENK vuông tại N nên F là trung điểm của EK.

Vậy ta có đpcm.

a: góc AMB=góc ACB=90 độ

=>BM vuông góc DA và AC vuông góc DB

góc DMH+góc DCH=90+90=180 độ

=>DMHC nội tiếp

Xét ΔHMA vuông tại M và ΔHCB vuông tại C có

góc MHA=góc CHB

=>ΔHMA đồng dạng với ΔHCB

=>HM/HC=HA/HB

=>HM*HB=HA*HC

b: góc DBM=góc CBM=1/2*sđ cung CM

góc MBA=1/2*sđ cung MA

mà sđ cung CM=sđ cung MA

nên góc DBM=góc ABM

=>BM là phân giác của góc DBA

Xét ΔBDA có

BM vừa là đường cao, vừa là phân giác

=>ΔBDA cân tại B

d: Xét ΔMAK vuông tại M và ΔMDH vuông tại M có

MA=MD

góc MAK=góc MDH

=>ΔMAK=ΔMDH

=>MK=MH

Xét tứ giác AKDH có

M là trung điểm chung của AD và KH

AD vuông góc KH

=>AKDH là hình thoi

26 tháng 5 2021

b) Dễ thấy C là trực tâm của tam giác IAB nên C, I, H thẳng hàng.

Do tứ giác AICK là hình thang nội tiếp được đường tròn nên là hình thang cân.

Khi đó \(\widehat{IAK}=\widehat{CKA}\Rightarrow\widehat{IAB}=\widehat{NBA}\)

Suy ra tam giác NAB vuông cân tại N nên \(\widehat{NBA}=45^o\).

Ta có các tứ giác CMIN, AMIH nội tiếp được nên \(\widehat{NMH}=\widehat{NMI}+\widehat{HMI}=\widehat{ICN}+\widehat{IAB}=45^o+45^o=90^o\Rightarrow MN\perp MH\).

 

26 tháng 5 2021

undefined

c) Đề phải là \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}\ge6\).

Đặt \(x=\dfrac{IH}{CH};y=\dfrac{IN}{AN};z=\dfrac{IM}{BM}\left(x,y,z< 1\right)\).

Ta có \(x+y+z=\dfrac{S_{IAB}}{S_{ABC}}+\dfrac{S_{IBC}}{S_{ABC}}+\dfrac{S_{ICA}}{S_{ABC}}=1\).

Lại có \(\dfrac{IH}{CH}=x\Rightarrow\dfrac{CH}{IH}=\dfrac{1}{x}\Rightarrow\dfrac{IC}{IH}=\dfrac{1}{x}-1\).

Tương tự \(\dfrac{IA}{IN}=\dfrac{1}{y}-1;\dfrac{IB}{IM}=\dfrac{1}{z}-1\).

Do đó \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-3\ge_{Svacxo}\dfrac{9}{x+y+z}-3=\dfrac{9}{1}-3=6\).

Vậy ta có đpcm.

loading...  loading...  loading...  loading...  loading...  loading...