\(\frac{b}{\sqrt{a+b}-\sqrt{a-b}}< \frac{c}{\sqrt{a+c}-\sqrt{a-c}}\) \(a>b>c>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sử dụng bất đẳng thức Chebyshev sau đây:
Nếu các số \(a\ge b\ge c,x\ge y\ge z\) thì \(3\left(ax+by+cz\right)\ge\left(a+b+c\right)\left(x+y+z\right).\)
Thực vậy bất đẳng thức cần chứng minh tương đương với \(\left(a-b\right)\left(x-y\right)+\left(b-c\right)\left(y-z\right)+\left(c-a\right)\left(z-x\right)\ge0.\)
Không mất tính tổng quát, giả sử \(a\ge b\ge c\). Khi đó bất đẳng thức cần chứng minh tương đương với
\(\frac{a+b}{\sqrt{c\left(a+b\right)}}+\frac{b+c}{\sqrt{a\left(b+c\right)}}+\frac{c+a}{\sqrt{b\left(c+a\right)}}\ge2\left(\frac{c}{\sqrt{c\left(a+b\right)}}+\frac{a}{\sqrt{a\left(b+c\right)}}+\frac{b}{\sqrt{b\left(c+a\right)}}\right)\)
\(\leftrightarrow\frac{a+b-2c}{\sqrt{c\left(a+b\right)}}+\frac{c+a-2b}{\sqrt{b\left(c+a\right)}}+\frac{b+c-2a}{\sqrt{a\left(b+c\right)}}\ge0\) (***)
Tuy nhiên ta có \(a+b-2c\ge c+a-2b\ge b+c-2a\) và \(\frac{1}{\sqrt{c\left(a+b\right)}}\ge\frac{1}{\sqrt{b\left(c+a\right)}}\ge\frac{1}{\sqrt{a\left(b+c\right)}}\) nên theo bất đẳng thức Chebyshev
\(\frac{a+b-2c}{\sqrt{c\left(a+b\right)}}+\frac{c+a-2b}{\sqrt{b\left(c+a\right)}}+\frac{b+c-2a}{\sqrt{a\left(b+c\right)}}\)
\(\ge\frac{1}{3}\left(a+b-2c+b+c-2a+c+a-2b\right)\left(\frac{1}{\sqrt{c\left(a+b\right)}}+\frac{1}{\sqrt{b\left(c+a\right)}}+\frac{1}{\sqrt{a\left(b+c\right)}}\right)=0.\)
Vậy bất đẳng thức (***) đúng, nên ta có điều phải chứng minh.
bài n t vừa làm mà, vào link này nhé
https://olm.vn/hoi-dap/question/1129328.html
\(A=\frac{a\sqrt{a}}{\sqrt{a+b+2c}}+\frac{b\sqrt{b}}{\sqrt{b+c+2a}}+\frac{c\sqrt{c}}{\sqrt{c+a+2b}}\)
\(A=\frac{a^2}{\sqrt{a\left(a+b+2c\right)}}+\frac{b^2}{\sqrt{b\left(b+c+2a\right)}}+\frac{c^2}{\sqrt{c\left(c+a+2b\right)}}\)
\(\ge\frac{\left(a+b+c\right)^2}{\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}}\)
Xét: \(2\left(\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}\right)\)
\(=\sqrt{4a\left(a+b+2c\right)}+\sqrt{4b\left(b+c+2a\right)}+\sqrt{4c\left(c+a+2b\right)}\)
\(\le\frac{4a+a+b+2c+4b+b+c+2a+4c+c+a+2b}{2}=4\left(a+b+c\right)\)
\(\Rightarrow\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}\le2\left(a+b+c\right)\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\)
\("="\Leftrightarrow a=b=c=1\)
a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{ab}\)
b) Giống câu a ?
c) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\)
\(=\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\sqrt{\frac{4b}{a}}+\sqrt{\frac{1}{ab}}\right):\left(\frac{ab+2b-a+1}{ab}\right)\)
\(=\frac{ab-a+2b+1}{\sqrt{ab}}\cdot\frac{ab}{ab+2b-a+1}\)
\(=\sqrt{ab}\)
bđt cần c/m tương đương với:
\(\left(\frac{b+c}{\sqrt{a}}+\sqrt{a}\right)+\left(\frac{a+c}{\sqrt{b}}+\sqrt{b}\right)+\left(\frac{a+b}{\sqrt{c}}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\\ \ \)\(\left(a+b+c\right)\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)
Mặt khác:
\(a+b+c\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}\)
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\frac{9}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
=> \(VT\ge3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
Ta cần c/m:
\(3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)
<=> \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\sqrt[3]{\sqrt{abc}}=3\)(BĐt Cô-si)
xong rồi bạn nhé
Ta luôn có :
\(\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\ge0\forall a,b\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)
\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{2}{\sqrt{ab}}+\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{2\left(a+b\right)}{ab}\ge\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)^2\)
\(\Leftrightarrow\sqrt{\frac{2\left(a+b\right)}{ab}}\ge\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế :
\(\sqrt{2}\left(\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{a+c}{ac}}\right)\)
\(\ge2\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\)
\(\Leftrightarrow\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{a+c}{ac}}\ge\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
Chúc bạn học tốt !!!
Đặt \(\frac{1}{\sqrt{a}}=x,\frac{1}{\sqrt{b}}=y,\frac{1}{\sqrt{c}}\)=z
Thay vào ta có:\(\sqrt{2}\)(x+y+x)\(\le\)\(\sqrt{\left(x^2+y^2\right)}+\sqrt{x^2+z^2}+\sqrt{\left(y^2+z^2\right)}\)
Ta có bất đẳng thức sau A: (m2+n2)(p2+q2)\(\ge\)(mp+nq)2 dễ dàng chứng mình bằng cách khai triển
áp dụng bdt A với m=x,n=z,p=\(\sqrt{2}\).q=\(\sqrt{2}\) ta được
\(\sqrt{\frac{\left(x^2+z^2\right)\left(\sqrt{2}^2+\sqrt{2}^2\right)}{4}}\ge\sqrt{\left(x\sqrt{2}+z\sqrt{2}\right)^2}\)/2=\(\frac{\sqrt{2}\left(x+y\right)}{2}\)
Tương tự với cái phần tử còn lại ta được điều cần cm
cần chứng minh \(\frac{b}{\sqrt{a+b}-\sqrt{a-b}}< \frac{c}{\sqrt{a+c}-\sqrt{a-c}}\)
\(\Leftrightarrow\frac{b\left(\sqrt{a+b}+\sqrt{a-b}\right)}{a+b-a+b}< \frac{c\left(\sqrt{a+c}+\sqrt{a-c}\right)}{a+c-a+c}\)
\(\Leftrightarrow\sqrt{a+b}+\sqrt{a-b}< \sqrt{a+c}+\sqrt{a-c}\)
\(\Leftrightarrow2a+2\sqrt{a^2-b^2}< 2a+2\sqrt{a^2-c^2}\)
\(\Leftrightarrow a^2-b^2< a^2-c^2\Leftrightarrow b^2>c^2\)(luôn đúng vì a>b>c)
Dùng liên hợp cũng ra bn nhé