K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

\(=\sqrt{9-4\sqrt{2}+\sqrt{\left(\sqrt{8}+\sqrt{1}\right)^2}}\)

\(=\sqrt{9-4\sqrt{2}}+!\sqrt{8}+1!\)

\(=\sqrt{\left(\sqrt{8}-1\right)^2}+\sqrt{8}+1\)

\(=!\sqrt{8}-1!+\sqrt{8}+1\)

\(=\sqrt{8}-1+\sqrt{8}+1\)

\(=2\sqrt{8}\)

17 tháng 7 2023

1) \(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{2^2-2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=\left|2+\sqrt{5}\right|-\left|2-\sqrt{5}\right|\)

\(=2+\sqrt{5}+2-\sqrt{5}\)

\(=4\)

2) \(\sqrt{12-6\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)

\(=\sqrt{3^2-2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{3^2+2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)

\(=\left|3-\sqrt{3}\right|+\left|3+\sqrt{3}\right|\)

\(=3-\sqrt{3}+3+\sqrt{3}\)

\(=6\)

10 tháng 12 2020

Ta có: \(\sqrt{29+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}+5\sqrt{2}\)

\(=\sqrt{29+30\sqrt{2+\sqrt{8+2\cdot2\sqrt{2}\cdot1+1}}}+5\sqrt{2}\)

\(=\sqrt{29+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}+5\sqrt{2}\)

\(=\sqrt{29+30\sqrt{2+2\sqrt{2}+1}}+5\sqrt{2}\)

\(=\sqrt{29+30\sqrt{2+2\sqrt{2}\cdot1+1}}+5\sqrt{2}\)

\(=\sqrt{29+30\sqrt{\left(\sqrt{2}+1\right)^2}}+5\sqrt{2}\)

\(=\sqrt{29+30\left(\sqrt{2}+1\right)}+5\sqrt{2}\)

\(=\sqrt{29+30\sqrt{2}+30}+5\sqrt{2}\)

\(=\sqrt{9+2\cdot3\cdot5\sqrt{2}+50}+5\sqrt{2}\)

\(=\sqrt{\left(3+5\sqrt{2}\right)^2}+5\sqrt{2}\)

\(=3+5\sqrt{2}+5\sqrt{2}=3+10\sqrt{2}\)

\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)

\(=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\)

\(=\sqrt{43+2\cdot\sqrt{450}}\)

\(=\sqrt{25+2\cdot5\cdot3\sqrt{2}+18}\)

\(=\sqrt{\left(5+3\sqrt{2}\right)^2}=5+3\sqrt{2}\)

a: \(=2\sqrt{2}+1-3=2\sqrt{2}-2\)

b: \(=\sqrt{3}+1-2\sqrt{3}-1=-\sqrt{3}\)

c: \(=2-\sqrt{3}+\sqrt{3}-1=1\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2023

Lời giải:
a.

\(=\sqrt{5+2.2\sqrt{5}+2^2}-\sqrt{5-2.2\sqrt{5}+2^2}\)

$=\sqrt{(\sqrt{5}+2)^2}-\sqrt{(\sqrt{5}-2)^2}$

$=|\sqrt{5}+2|-|\sqrt{5}-2|=(\sqrt{5}+2)-(\sqrt{5}-2)=4$

b.

$=\sqrt{3-2.3\sqrt{3}+3^2}+\sqrt{3+2.3.\sqrt{3}+3^2}$

$=\sqrt{(\sqrt{3}-3)^2}+\sqrt{(\sqrt{3}+3)^2}$

$=|\sqrt{3}-3|+|\sqrt{3}+3|$

$=(3-\sqrt{3})+(\sqrt{3}+3)=6$

c.

$=\sqrt{2+2.3\sqrt{2}+3^2}-\sqrt{2-2.3\sqrt{2}+3^2}$

$=\sqrt{(\sqrt{2}+3)^2}-\sqrt{(\sqrt{2}-3)^2}$
$=|\sqrt{2}+3|-|\sqrt{2}-3|$

$=(\sqrt{2}+3)-(3-\sqrt{2})=2\sqrt{2}$

a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)

\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(=4-3\cdot A\)

\(\Leftrightarrow A^3+3A-4=0\)

\(\Leftrightarrow A^3-A+4A-4=0\)

\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)

\(\Leftrightarrow A=1\)

NV
25 tháng 6 2021

\(x=\dfrac{3\sqrt[3]{8-3\sqrt{5}}}{\sqrt[3]{57}}.\sqrt[3]{8+3\sqrt{5}}=\dfrac{3\sqrt[3]{\left(8-3\sqrt{5}\right)\left(8+3\sqrt[]{5}\right)}}{\sqrt[3]{57}}=\sqrt[3]{\dfrac{19}{57}}=\dfrac{1}{\sqrt[3]{3}}\)

\(y=\dfrac{\left(\sqrt[3]{3}+\sqrt[4]{2}\right)\left(\sqrt[3]{3}-\sqrt[4]{2}\right)}{\sqrt[3]{3}+\sqrt[4]{2}}+\dfrac{\left(\sqrt[4]{2}-\sqrt[3]{81}\right)\left(\sqrt[4]{2}+\sqrt[3]{81}\right)}{\sqrt[4]{2}-\sqrt[3]{81}}\)

\(=\sqrt[3]{3}-\sqrt[4]{2}+\sqrt[4]{2}+\sqrt[3]{81}=\sqrt[3]{3}+3\sqrt[3]{3}=4\sqrt[3]{3}\)

\(T=xy=\dfrac{4\sqrt[3]{3}}{\sqrt[3]{3}}=4\)

6 tháng 6 2019

a) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)\)

\(=\sqrt{3}+1-\sqrt{3}+1\)

\(=2\)

b) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{5}-2-\left(2+\sqrt{5}\right)\)

\(=\sqrt{5}-2-\sqrt{5}-2\)

\(=-4\)

6 tháng 6 2019

a) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3+2\sqrt{3}+1}-\sqrt{3-2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}+1-\sqrt{3}+1\)

\(=2\)

b) tương tự