Cho hình thang ABCD vuông tại A và D.Biết CD=2AB=2AD và BC=\(a\sqrt{2}\).
a. TÍnh diện tích hình thang ABCD theo a.
b. Gọi I là trung điểm cùa BC, H là chân đường vuông góc kẻ từ D xuống AC. Chứng minh HDI=45 độ.
Giúp với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABHD có
\(\widehat{BAD}=\widehat{ADH}=\widehat{BHD}=90^0\)
=>ABHD là hình chữ nhật
Hình chữ nhật ABHD có AB=AD
nên ABHD là hình vuông
=>AB=BH=HD=DA
mà \(AB=AD=\dfrac{DC}{2}\)
nên \(BH=DH=\dfrac{DC}{2}\)
DH=DC/2
=>H là trung điểm của DC
Xét ΔDBC có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔDBC cân tại B(2)
Xét ΔBDC có
BH là đường trung tuyến
\(BH=\dfrac{DC}{2}\)
Do đó: ΔBDC vuông tại B(1)
Từ (1) và (2) suy ra ΔBDC vuông cân tại B
b: AB=HD
HD=HC
Do đó: AB=HC
Xét tứ giác ABCH có
AB//CH
AB=CH
Do đó: ABCH là hình bình hành
=>AC cắt BH tại trung điểm của mỗi đường
mà M là trung điểm của BH
nên M là trung điểm của AC
c: \(\widehat{ADI}+\widehat{IAD}=90^0\)(ΔADI vuông tại I)
\(\widehat{ACD}+\widehat{IAD}=90^0\)(ΔADC vuông tại D)
Do đó: \(\widehat{ADI}=\widehat{ACD}\)
mà \(\widehat{ACD}=\widehat{BAC}\)(hai góc so le trong, AB//CD)
nên \(\widehat{BAC}=\widehat{ADI}\)
a) GỌi E là trung điểm của CD, chi ra ABED là hình vuônng và BEC là tam giác vuông cân.
Từ đó suy ra AB = AD = a, BC = 2a
Diện tích của hình thang ABCD là:
S = (AB+CD).AD2(��+��).��2 = (a+2a).a2(�+2�).�2 = 3a223�22
b) ˆADH���^ = ˆACD���^ (1) ( 2 góc nhọn có cặp cạnh tương ứng vuông góc)
Xét hai tam giác △△ADC và IBD vuông tại D và B có:
ADDC���� = IBBC���� = 1212, do đó hai tam giác ADC và IBD đồng dạng
Suy ra ˆACD���^ = ˆBDI���^ (2)
Từ (1), (2) ⇒⇒ ˆADH���^ = ˆBDI���^
Mà ˆADH���^ + ˆBDH���^ = 45o45� ⇒⇒ ˆBDI���^ = ˆBDH���^ = 45o45� hay ˆHDI���^ = 45o45�
Chúc bạn học tốtt
#𝗝𝘂𝗻𝗻
Thanks!