\(P=\dfrac{x\left(4x^2+3\right)+y\left(4y^2+3\right)}{x+y+4xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)
b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)
c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)
=1/3
d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)
\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)
Xí câu BĐT:
ta cần chứng minh \(\dfrac{a^2}{b^2c}+\dfrac{b^2}{c^2a}+\dfrac{c^2}{a^2b}\ge\dfrac{ab+bc+ca}{abc}\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
Áp dụng BĐT cauchy:
\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}.ab}=2a^2\)
tương tự ta có:\(\dfrac{b^3}{c}+bc\ge2b^2;\dfrac{c^3}{a}+ac\ge2c^2\)
cả 2 vế các BĐT đều dương,cộng vế với vế ta có:
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2a^2+2b^2+2c^2\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)
mà a2+b2+c2\(\ge ab+bc+ca\) ( chứng minh đầy đủ nhá)
do đó \(S=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(ab+bc+ca\right)-ab+bc+ca=ab+bc+ca\)
suy ra BĐT ban đầu đúng
dấu = xảy ra khi và chỉ khi a=b=c.
P/s: cách khác :Áp dụng BĐT cauchy-schwarz:
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)
\(S\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Câu hệ này =))
b, Từ hệ đã cho ta thấy x,y > 0
Trừ vế cho vế pt (1) và (2) của hệ ta được:
\(x^4-y^4=4y-4x\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)=4\left(y-x\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)+4\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(x+y\right)\left(x^2+y^2\right)+4\right]=0\)
\(\Leftrightarrow x-y=0\) ( Vì \(\left(x+y\right)\left(x^2+y^2\right)+4>0\) với x,y > 0)
\(\Leftrightarrow x=y\)
Với x = y thay vào pt đầu của hệ ta được:
\(x^4-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow x-1=0\) ( Vì \(x^2+2x+3>0\) )
\(\Leftrightarrow x=1\)
Với x=1 suy ra y=1
Vậy hệ đã cho có nghiệm duy nhất (x;y) = (1;1)
Ta chứng minh BĐT sau:
Ta có: \(x\left(3-4x^2\right)=-4x^3+3x-1+1=1-\left(x+1\right)\left(2x-1\right)^2\le1\)
\(\Rightarrow\dfrac{4x^2}{x\left(3-4x^2\right)}\ge\dfrac{4x^2}{1}=4x^2\)
Tương tự và cộng lại:
\(Q\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+zx\right)=3\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{2}\)
a.
\(\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)
Nhân vế:
\(-4\left(x^3-y^3\right)=\left(16x-4y\right)\left(5x^2-y^2\right)\)
\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)
\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4y}{7}\\y=-3x\end{matrix}\right.\)
Thế vào \(y^2=5x^2+4...\)
b. Đề bài không hợp lý ở \(4x^2\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)
Trừ vế:
\(x^3-y^3-3x^2-6y^2=9-3x+12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\)
\(\Leftrightarrow y=x-3\)
Thế vào \(x^2=2y^2=x-4y\) ...
Đề không đầy đủ. Bạn xem lại.