K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

\(x=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)

\(x=\frac{1}{1}-\frac{1}{5}=\frac{4}{5}\)

12 tháng 5 2017

x=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5

x=1-1/5

x=4/5

12 tháng 6 2018

\(a,\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2017\cdot2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}.\)

\(b,\left[x\cdot\frac{5}{3}-1\right]:9=3\frac{1}{2}:2,25\)

\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{7}{2}:\frac{9}{4}\)

\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{7}{2}\cdot\frac{4}{9}\)

\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{14}{9}\)

\(\Leftrightarrow x\cdot\frac{5}{3}-1=\frac{14}{9}\cdot9\)

\(\Leftrightarrow x\cdot\frac{5}{3}-1=14\)

\(\Leftrightarrow x\cdot\frac{5}{3}=14+1\)

\(\Leftrightarrow x\cdot\frac{5}{3}=15\)

\(\Leftrightarrow x=15:\frac{5}{3}\)

\(\Leftrightarrow x=15\cdot\frac{3}{5}\)

\(\Leftrightarrow x=9.\)

12 tháng 6 2018

a)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=\frac{1}{1}-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

b)\(\left[x.\frac{5}{3}-1\right]:9=3\frac{1}{2}:2,25\)

\(\Leftrightarrow\left[x.\frac{5}{3}-1\right]:9=3\frac{1}{2}:\frac{9}{4}=1\frac{5}{9}\)

\(\Rightarrow x.\frac{5}{3}-1=1\frac{5}{9}.9=14\)

\(\Rightarrow x.\frac{5}{3}=14+1=15\)

\(\Rightarrow x=15:\frac{5}{3}=9\)

1 tháng 7 2016

1/1x2+1/2x3+1/3x4+...+1/99x100+1

1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100 +1

=1- 1/100 +1

=99/100 +1

=199/100

1 tháng 7 2016

1/1.2 + 1/2.3 + 1/3.4 + ... + 1/999.1000 + 1

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/999 - 1/1000 + 1

= 1 - 1/1000 + 1

= 2 - 1/1000

= 2000/1000 - 1/1000

= 1999/1000

Ủng hộ mk nha ♡_♡☆_☆

1 tháng 7 2018

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-..........-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2018}{2018}-\frac{1}{2018}=\frac{2017}{2018}\)

b) \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+..........+\frac{2}{2017.2018}+\frac{2}{2018.2019}\)

\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}+\frac{1}{2018.2019}\right)\)

\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(=2\left(1-\frac{1}{2019}\right)\)

\(=2\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)

\(=2.\frac{2018}{2019}\)

\(=\frac{4036}{2019}\)

Phần c tương tự nha

1 tháng 7 2018

a) \(\frac{1}{1.2}\) +  \(\frac{1}{2.3}\) + .......+  \(\frac{1}{2017.2018}\)

= 1 -  \(\frac{1}{2}\) + \(\frac{1}{2}\) -  \(\frac{1}{3}\) + .......+  \(\frac{1}{2017}\) -   \(\frac{1}{2018}\)

= 1 -  \(\frac{1}{2018}\) =  \(\frac{2017}{2018}\)

câu a) mik sửa đề một tí ko biết có đúng ko

câu b , c tương tự nhưng cần lấy tử ra chung 

23 tháng 7 2017

\(C=\frac{9}{10}-\frac{1}{10.9}-\frac{1}{9.8}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(C=\frac{9}{10}-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.8}+\frac{1}{9.10}\right)\)

\(C=\frac{9}{10}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)

\(C=\frac{9}{10}-\left(\frac{1}{1}-\frac{1}{10}\right)\)

\(C=\frac{9}{10}-\frac{9}{10}=0\)

NV
12 tháng 3 2019

Ta có:

\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(\Rightarrow\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2005.2006.2007}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2006.2007}\right)=\frac{1}{2}\left(\frac{2005.2008}{2.2006.2007}\right)\)

Đặt \(A=1.2+2.3+...+n\left(n+1\right)\)

\(\Rightarrow3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+n\left(n+1\right)\left(n+2-\left(n-1\right)\right)\)

\(\Rightarrow3A=1.2.3-1.2.0+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(\Rightarrow3A=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

\(\Rightarrow1.2+2.3+...+2006.2007=\frac{2006.2007.2008}{2}\)

Vậy pt trở thành:

\(\frac{1}{2}\left(\frac{2005.2008}{2.2006.2007}\right)x=\frac{2006.2007.2008}{2}\)

\(\Leftrightarrow\frac{2005}{2.2006.2007}x=2006.2007\)

\(\Rightarrow x=\frac{2.\left(2006.2007\right)^2}{2005}\)

6 tháng 5 2018

Bài 1

a) \(P=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)

b) \(S=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{33}{99}-\frac{1}{99}\)

\(=\frac{32}{99}\)

c)\(Q=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)

\(=\frac{1}{2}-\frac{1}{20}\)

\(=\frac{10}{20}-\frac{1}{20}\)

\(=\frac{9}{20}\)

Tk mình nha!!

7 tháng 5 2018

Câu 2:

\(P=\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)

\(=\left(\frac{2}{2}+\frac{1}{2}\right).\left(\frac{3}{3}+\frac{1}{3}\right).\left(\frac{4}{4}+\frac{1}{4}\right)...\left(\frac{99}{99}+\frac{1}{99}\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{100}{99}\)

\(=\frac{3\cdot4\cdot5...100}{2.3.4...99}\)

\(=\frac{3\cdot100}{2}\)

\(=\frac{300}{2}=150\)

5 tháng 7 2016

c.\(=3\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\right)\)

\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=3\left(1-\frac{1}{101}\right)\)

\(=\frac{300}{101}\)

5 tháng 7 2016

a.\(=4\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=4\left(1-\frac{1}{100}\right)\)

\(=\frac{99}{25}\)

2 tháng 8 2017

\(\frac{x}{6}+\frac{7}{3.2^2}=\frac{17}{18}-\frac{1}{3^2}\)

\(\frac{x}{6}+\frac{7}{12}=\frac{5}{6}\)

\(\frac{x}{6}=\frac{5}{6}-\frac{7}{12}\)

\(\frac{x}{6}=\frac{1}{4}\)

\(x=\frac{1}{4}.6\)

\(x=\frac{3}{2}\)