giải hộ cái nha
bài tìm x bít
\(3-\frac{1-\frac{1}{3}}{1+\frac{1}{x}}=2\frac{2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt
\(\frac{x-1}{2}\)=\(\frac{y-2}{3}\)=\(\frac{z-3}{4}\)= k
Ta có: x=2k+1
y=3k+2
z=4k+3
Theo đề ta có: 2x+3y-z=50
2(2k+1)+3(3k+2)
Xin lỗi mình giải tiếp nè, lỡ tay bấm lộn
Theo đè ta có: 2x+3y-z=50
\(\Rightarrow\) 2(2k+1)+3(3k+2}-(4z+3)=50
\(\Rightarrow\) 4k+2+9k+6-4z-3=50
\(\Rightarrow\) 9k+5=50
\(\Rightarrow\) 9k=45
\(\Rightarrow\) k=5
Thay k=5 vào, ta có: x= 2.5+1=11
y= 3.5+2=17
z=4.5+3=23
Nhớ cho mình nha
=> x.13/4 + -7/6. x - 5/3 = 5/12
=> x. (13/4 + -7/6 - 5/3) = 5/12
=> x. 5/12 = 5/12
=> x = 5/12:5/12
=> x = 5/12.12/5
=> x = 1
Ta có :
\(B=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{x}.\left(1+2+3+...+x\right)\)
\(B=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{x}.\frac{x.\left(x+1\right)}{2}\)
\(B=1+\frac{3}{2}+\frac{4}{2}+...+\frac{x+1}{2}\)
\(B=\frac{2+3+4+...+\left(x+1\right)}{2}\)
để B = 115 thì \(\frac{2+3+4+...+\left(x+1\right)}{2}=115\)
\(\Rightarrow\)\(\left(x+3\right)x=115.2.2\)
\(\Rightarrow\)\(\left(x+3\right)x=23.20\)
\(\Rightarrow\)x = 20
(x - 2/3)3 = -1/27
=> (x - 2/3)3 = (-1/3)3
=> x - 2/3 = -1/3
=> x = -1/3 + 2/3
=> x = 1/3
Từ bài ra ta có \(\left(x-\frac{2}{3}\right)^3=\left(\frac{-1}{3}\right)^3\)
\(\Rightarrow x-\frac{2}{3}=\frac{-1}{3}\)
\(\Rightarrow x=\frac{-1}{3}+\frac{2}{3}\)
\(\Rightarrow x=\frac{1}{3}\)
Vậy ... nếu đúng thì k nha
1. ĐKXĐ : \(x\ne-1;-3;-5;-7\)
\(\frac{1}{x^2+x+3x+3}+\frac{1}{x^2+3x+5x+15}+\frac{1}{x^2+7x+5x+35}=\frac{1}{9}\)=1/9
\(\frac{1}{x\left(x+1\right)+3\left(x+1\right)}+\frac{1}{x\left(x+3\right)+5\left(x+3\right)}+\frac{1}{x\left(x+7\right)+5\left(x+7\right)}=\frac{1}{9}\)
\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{1}{9}\)
nhân cả 2 vế với 2 ta được
\(\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}=\frac{2}{9}\)
\(< =>\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}=\frac{2}{9}\)
\(< =>\frac{1}{x+1}-\frac{1}{x+7}=\frac{2}{9}\)
\(< =>\frac{\left(x+7\right)-\left(x+1\right)}{\left(x+1\right)\left(x+7\right)}=\frac{2}{9}\)
\(< =>\frac{6}{x^2+8x+7}=\frac{2}{9}\)
\(=>6.9=2x^2+16x+14\)
\(< =>2x^2+16x+14-54=0\)
\(< =>2\left(x^2+8x-20\right)=0\)
\(< =>x^2+8x-20=0\)
\(< =>x^2+10x-2x-20=0\)
\(< =>x\left(x+10\right)-2\left(x+10\right)=0\)
\(< =>\left(x-2\right)\left(x+10\right)=0\)
\(=>\hept{\begin{cases}x-2=0\\x+10=0\end{cases}< =>\hept{\begin{cases}x=2\\x=-10\end{cases}}}\)(thỏa mãn ĐKXĐ)
\(A=\frac{1}{x^2-6x+17}=\frac{1}{\left(x^2-6x+9\right)+8}=\frac{1}{\left(x-3\right)^2+8}\le\frac{1}{8}\)
Có x^2-6x+17 = (x^2-6x+9)+8 = (x-3)^2 + 8 >= 8
=> A =1/x^2-6x+17 <= 1/8
Dấu"=" xảy ra <=> x-3 = 0 <=> x=3
Vậy Max A = 1/8 <=> x=3
\(3-\frac{1-\frac{1}{3}}{1+\frac{1}{x}}=2\frac{2}{3}\)
\(\Rightarrow\frac{1}{3}-\frac{2}{3}:\left(1+\frac{1}{x}\right)=0\)
\(\Rightarrow\frac{1}{3}-\frac{2}{3}:\frac{x+1}{x}=0\)
\(\Rightarrow\frac{2}{3}.\frac{x}{x+1}=\frac{1}{3}\)
\(\Rightarrow\frac{2x}{3x+3}=\frac{1}{3}\)
\(\Rightarrow6x=3x+3\)
\(\Rightarrow x=1\)
x sẽ = 1