Cho một hình chữ nhật ABCD nối b với d trên đoạn BD lấy điểm M sao cho bằng 1/2 MD biết diện tích hình tam giác bmc bằng 12 xăng ti mét vuông tính diện tích hình chữ nhật ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AN = 2/3 AI ==> NI = 1/3 AI
SAIM = SMNI x 3 (AI=NI x 3, chung đường cao kẻ từ M).
SAIM = 15 x 3 = 45 (cm2)
SABM = SAIM x 2 (BM=IM x 2, chung đường cao kẻ từ A).
SABM = 45 x 2 = 90 (cm2)
Xét 3 tam giác ABM ; BMC và AMD. Ta thấy AB = MD+MC (chiều dài hình chữ nhật), 3 tam giác này có 3 đường cao bằng nhau bằng chiều rộng hình chữ nhật nên.
SABM = SBMC + SAMD = 90 cm2.
Diện tích hình chữ nhật ABCD
90 x 2 = 180 (cm2)
ai k mk mk k lại
Ta có: * \(\frac{S_{\Delta ADE}}{S_{\Delta ADB}}=\frac{1}{2}\) mà \(\frac{S_{\Delta ADB}}{S_{ABCD}}=\frac{1}{2}\) suy ra \(\frac{S_{\Delta ADE}}{S_{ABCD}}=\frac{1}{4}\)
* \(\frac{S_{\Delta DCM}}{S_{\Delta DCB}}=\frac{1}{2}\) mà \(\frac{S_{\Delta CDB}}{S_{ABCD}}=\frac{1}{2}\) suy ra \(\frac{S_{\Delta DCM}}{S_{ABCD}}=\frac{1}{4}\)
* \(\frac{S_{\Delta EBM}}{S_{\Delta EBC}}=\frac{1}{2}\) mà \(\frac{S_{\Delta EBC}}{S_{\Delta ABC}}=\frac{1}{2}\) suy ra \(\frac{S_{\Delta EBM}}{S_{\Delta ABC}}=\frac{1}{4}\)
tuy nhiên \(\frac{S_{\Delta EBC}}{S_{ABCD}}=\frac{1}{4}\) suy ra \(\frac{S_{\Delta EBM}}{S_{ABCM}}=\frac{1}{8}\)
Ta lại có: \(\frac{S_{\Delta DEM}}{S_{ABCD}}=S_{ABCD}-\left(S_{\Delta ADE}+S_{\Delta EBM}+S_{\Delta DCM}\right)=1-\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{8}\right)=\frac{3}{8}\)
\(\Rightarrow\) \(S_{ABCD}=S_{\Delta DEM}\div\frac{3}{8}=6\times\frac{8}{3}=16\left(cm^2\right)\)
MB=1/2MD
=>MB=1/3BD
=>\(S_{BDC}=12\cdot3=36\left(cm^2\right)\)
=>\(S_{ABCD}=72\left(cm^2\right)\)
MB=1/2MD =>MB=1/3BD
=> S BDC = 12 * 3 = 36 (cm2)
=> S ABCD = 72 (cm2)