Tìm số tự nhiên n để n2+31n+1984 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Chí Nhân - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo link này nhé!
Đặt \(k^2=n^2+31n+1984\) (k thuộc N)
Ta có \(n^2+30n+225< n^2+31n+1984< n^2+90n+2025\)
\(\Rightarrow\left(n+15\right)^2< k^2< \left(n+45\right)^2\)
Xét k2 trong khoảng trên được n = 565 và n = 1728 thỏa mãn đề bài.
Cho mình hỏi tại sao lại xét \(k^2\) nằm trong hai khoảng đó vâỵ ạ. Ta
có thể thay thế \(n^2+90n+2025\) bằng một biểu thức khác được không và tại sao ạ ?
Mong sớm nhận được phản hồi ạ. mình cảm ơn
Đặt \(n^2-3n=m^2\) với \(m\in N\)
\(\Rightarrow4n^2-12n=4m^2\)
\(\Rightarrow4n^2-12n+9=4m^2+9\)
\(\Rightarrow\left(2n-3\right)^2-\left(2m\right)^2=9\)
\(\Rightarrow\left(2n-3-2m\right)\left(2n-3+2m\right)=9\)
2n-3-2m | -9 | -3 | -1 | 1 | 3 | 9 |
2n-3+2m | -1 | -3 | -9 | 9 | 3 | 1 |
n | -1 | 0 | -1 | 4 | 3 | 4 |
m | 2 | 0 | -2 | 2 | 0 | -2 |
Vậy \(n=\left\{0;3;4\right\}\) là các giá trị thỏa mãn
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Câu hỏi của Nguyễn Chí Nhân - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo link này nhé!