Cho đường tròn (O;R) và dây MN cố định (MN < 2R ). Kẻ đường kính AB vuông góc với dây MN tại E. Lấy điểm C thuộc dây MN (C khác M, N, E). Đường thẳng BC cắt (O;R) tại điểm K (K khác B).
1. Chứng minh AKCE là tứ giác nội tiếp.
2. Chứng minh BM2=BK BC.
3. Gọi I là giao điểm của hai đường thẳng AK và MN; D là giao điểm của hai đường thẳng AC và BI . Chứng minh điểm C cách đều ba cạnh của ADEK.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
1: góc AKB=1/2*180=90 độ
góc AKC+góc AEC=180 độ
=>AKCE nội tiếp
2: Xet ΔBMC và ΔBKM có
góc BMC=góc BKM
góc MBC chung
=>ΔBMC đồng dạng với ΔBKM
=>BM/BK=BC/BM
=>BM^2=BK*BC