K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔSCE và ΔSFC có

góc SCE=góc SFC

góc CSE chung

=>ΔSCE đồng dạng với ΔSFC

=>SC^2=SE*SF

 

a: Xét ΔSCE và ΔSFC có

góc SCE=góc SFC

góc CSE chung

=>ΔSCE đồng dạng với ΔSFC

=>SC^2=SE*SF

b: ΔOEF cân tại O

mà OI là trung tuyến

nên OI vuông góc FE

góc OIS+góc OBS=180 độ

=>OISB nội tiếp

NV
1 tháng 3 2023

a.

Ta có \(\widehat{SAD}=\widehat{ACE}\) (góc nội tiếp và góc tiếp tuyến cùng chắn cung AE)

Lại có \(\widehat{ADB}\) là góc có đỉnh nằm trong đường tròn 

\(\Rightarrow\widehat{ADB}=\dfrac{1}{2}\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{CE}\right)=\widehat{ACB}+\widehat{CAE}\)

Mà \(\widehat{ACB}=\widehat{SAB}\) (cùng chắn cung AB) và \(\widehat{CAE}=\widehat{BAE}\) (do AE là phân giác \(\widehat{BAC}\))

\(\Rightarrow\widehat{ADB}=\widehat{SAB}+\widehat{BAE}=\widehat{SAD}\Rightarrow\Delta SAD\) cân tại S

\(\Rightarrow SA=SD\)

b.

Xét hai tam giác SAB và SCA có:

\(\left\{{}\begin{matrix}\widehat{ASB}\text{ chung}\\\widehat{SAB}=\widehat{ACB}\left(cmt\right)\end{matrix}\right.\)  \(\Rightarrow\Delta SAB\sim\Delta SCA\left(g.g\right)\)

\(\Rightarrow\dfrac{SA}{SC}=\dfrac{SB}{SA}\Rightarrow SA^2=SB.SC\)

Theo câu a ta có \(SA=SD\)

\(\Rightarrow SD^2=SB.SC\)

NV
1 tháng 3 2023

loading...

27 tháng 5 2023

loading...

Xét tứ giác SOAB có: \(\left\{{}\begin{matrix}\widehat{SAO}=90^o\\\widehat{SBO}=90^o\end{matrix}\right.\)

=> Tứ giác SOAB nội tiếp (tổng 2 góc đối = 180o).

=> 4 điểm S, A, O, B cùng thuộc 1 đường tròn.

góc SAO+góc SBO=180 độ

=>SAOB nội tiếp