K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2023

có `ΔABC=ΔDEF`

`=>AC=DF=8cm(tc)`

Ta có: `\Delta ABC = \Delta DEF`

`-> \text {AB = DE, BC = EF, AC = DF}`

Mà `\text {AC = 8 cm}`

`-> \text {AC = DF = 8 cm}.`

a: Xét ΔABC và ΔDEF có

góc A=góc D

góc B=góc E

=>ΔABC đồng dạng vơi ΔDEF

=>AB/DE=AC/DF=BC/EF

=>8/6=AC/DF=10/EF

=>EF=10*6/8=7,5cm và AC/DF=4/3

=>4DF=3AC

mà AC-DF=3

nên DF=9cm; AC=12cm

b: ΔABC đồng dạng với ΔDEF

=>S ABC/S DEF=(4/3)^2=16/9

=>S DEF=22,325625(cm2)

Bài 7:

Đặt a=A'B',b=A'C', c=B'C'

Theo đề,ta có: a/6=b/8=c/10

mà cạnh nhỏ nhất trong tam giác A'B'C' là 9cm

nên b/8=c/10=9/6=3/2

=>b=12cm; c=15cm

20 tháng 11 2016

a/ Ta có: \(\widehat{B}\)=\(\widehat{F}\); AB = EF

Để tam giác ABC = tam giác DEF theo trường hợp cạnh góc cạnh, ta cần bổ sung điều kiện BC = FD

Khi đó. tam giác ABC = tam giác EFD (c.g.c)

b/ Ta có: tam giác ABC = tam giác EFD

=> AB = EF; BC = FD; AC = DE

Chu vi tam giác ABC = tam giác EFD

AB + BC + AC = EF + FD + DE = 5 + 6 + 6

= 17 (cm)

Vậy chu vi tam giác ABC=chu vi tam giác EFD = 17 cm

21 tháng 4 2020

a,bc và pk

cạnh 156 tỉ số 16

58

76

23 tháng 3 2022
ABC cạnh 156 tỉ số 16 58 78

ΔDEF đồng dạng với ΔMNP

=>\(\dfrac{DE}{MN}=\dfrac{EF}{NP}=\dfrac{DF}{MP}\)

=>\(\dfrac{MN}{DE}=\dfrac{NP}{EF}=\dfrac{MP}{DF}\)

=>\(\dfrac{MN}{4}=\dfrac{NP}{7}=\dfrac{MP}{8}\)

Chu vi tam giác MNP bằng 38cm nên MN+NP+MP=38

Áp dụng tính chất của dãy tỉ số bằng nhau,  ta được:

\(\dfrac{MN}{4}=\dfrac{NP}{7}=\dfrac{MP}{8}=\dfrac{MN+NP+MP}{4+7+8}=\dfrac{38}{19}=2\)

=>\(MN=4\cdot2=8\left(cm\right);NP=7\cdot2=14\left(cm\right);MP=8\cdot2=16\left(cm\right)\)