So sánh A và B (không dùng máy tính bỏ túi)
A=2013^2014+1 và B=2013^2012+1
2013^2015++1 2013^2013+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1-1/(2013*2014)
B=1-1/(2014*2015)
2013*2014<2014*2015
=>1/2013*2014>1/2014*2015
=>-1/2013*2014<-1/2014*2015
=>A<B
Ta thấy B=2012+2013/2013+2014<1(vì 2012+2013<2013+2014)
Ta có A=2012/2013+2013/2014
A=1-1/2013+1-1/2014
A=(1+1)-(1/2013+1/2014)
A=2-(1/2013+1/2014)
Mà 1/2013<1/2;1/2014<1/2
=>1/2013+1/2014<1/2+1/2=1
=>2-(1/2013+1/2014)>1
=>A>1
Mà B<1
=>A>B
\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}=A\)
Vậy B<A
Ta có:
B=2012/(2013+2014)+2013/(2013+2014)
Xét từng số hạng của B:
2012/(2013+2014)<2012/2013
2013/2013+2014<2013/2014
=>B=2012/(2013+2014)+2013/(2013+2014)<2012/2013+2013/2014=A
=>B<A
a) Ta có:
\(\dfrac{2012}{2013}+\dfrac{1}{2013}=1\)
\(\dfrac{2013}{2014}+\dfrac{1}{2014}=1\)
Vì \(\dfrac{1}{2013}>\dfrac{1}{2014}\) nên \(\dfrac{2012}{2013}< \dfrac{2013}{2014}\)
b) Ta có:
\(\dfrac{1006}{1007}+\dfrac{1}{1007}=1\)
\(\dfrac{2013}{2015}+\dfrac{2}{2015}=1\)
Vì \(\dfrac{1}{1007}=\dfrac{2}{2014}>\dfrac{2}{2015}\)
nên \(\dfrac{1006}{1007}< \dfrac{2013}{2015}\)
c) ta có:
\(1-\dfrac{64}{73}=\dfrac{9}{73}=\dfrac{153}{1241}\)
\(1-\dfrac{45}{51}=\dfrac{2}{17}=\dfrac{146}{1241}\)
Vì \(\dfrac{153}{1241}>\dfrac{146}{1241}\) nên \(\dfrac{63}{73}>\dfrac{45}{51}\)
a) 2012/2013 và 2013/2014
1-2012/2013=1/2013
1-2013/2014=1/2014
Vì 1/2013> 1/2014 nên 2012/2013<2013/2014
b) 1006/1007 và 2013/2015
1-1006/1007=1/1007=2/2014
1-2013/2015=2/2015
Vì 2/2014>2/2015 nên 1006/1007<2013/2015
c) 64/73 và 45/51
1-64/73=9/73=18/146
1-45/51=2/17=18/153
Vì 18/146> 18/153 nên 64/73<45/51
Xét hiệu A-B. Sau khi quy đồng ta được.
\(A-B=\frac{2013^{2015}-2013^{2014}-\left(2013^{2016}-2013^{2013}\right)}{\left(2013^{2016}-1\right)\left(2013^{2014}+1\right)}=\frac{2013^{2015}-2013^{2016}+2013^{2013}-2013^{2014}}{\left(2013^{2016}-1\right)\left(2013^{2014}+1\right)}< 0\)
Nên A<B.
\(A=\frac{2013^{2014}+1}{2013^{2015}+1}\)
\(\Rightarrow2013A=\frac{2013\left(2013^{2014}+1\right)}{2013^{2015}+1}=\frac{2013^{2015}+2013}{2013^{2015}+1}\)(1)
\(B=\frac{2013^{2012}+1}{2013^{2013}+1}\)
\(\Rightarrow2013B=\frac{2013\left(2013^{2012}+1\right)}{2013^{2013}+1}=\frac{2013^{2013}+2013}{2013^{2013}+1}\)(2)
Từ (1) và (2) => A<B
Hinh nhu minh hoc ca hai bang nhau ma