Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi chiều dài hcn là x (m) ( x > 8 )
\(\Rightarrow\)chiều rộng hcn là x-8(m)
theo bài ra ta có pt
( x-8+2) (x - 5 )= 210
(x-6)(x-5)=210
x2 - 11x + 30=210
x2 - 11x - 180= 0
\(\Delta\)= 121 + 4 . 180=841
\(\Rightarrow\)pt có 2 nghiệm pb x1 = \(\frac{11+\sqrt{841}}{2}\)=20 ( TM)
x2= \(\frac{11-\sqrt{841}}{2}\)=-9(KTM)
vậy......
#mã mã#
một hình chữ nhật có chiều dài hơn chiều rộng 9m. nếu giảm chiều dài 3m và thêm chiều rộng 2m thì diện tích hình chữ nhật tăng 6m^2. Tính chu vi hình chữ nhật lúc đầu.
bạn nào tốt bụng làm hộ mình bài này với ( Giải toán bằng cách lập hệ phương trình lớp 8)
một hình chữ nhật có chiều dài hơn chiều rộng 9m. nếu giảm chiều dài 3m và thêm chiều rộng 2m thì diện tích hình chữ nhật tăng 6m^2. Tính chu vi hình chữ nhật lúc đầu.
bạn nào tốt bụng làm hộ mình bài này với ( Giải toán bằng cách lập hệ phương trình lớp 8)
Bài 1 :
a, - Gọi chiều dài chiều rộng hình chữ nhật là x và y ( m, x>y> 0 )
Ta có : x - y = 7 ( I )
- Áp dụng định lý pitago ta có : \(x^2+y^2=13^2=169\left(II\right)\)
- Từ (I) và (II ) ta có hệ phương trình : \(\left\{{}\begin{matrix}x=y+7\\x^2+y^2=169\end{matrix}\right.\)
\(\Leftrightarrow y^2+y^2+14y+49=169\)
\(\Leftrightarrow2y^2+14y-120=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=5\left(TM\right)\\y=-12\left(L\right)\end{matrix}\right.\)
=>x = 5 + 7 = 12 (m )
Vậy ...
gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)
diện tích thửa ruộng là x.y (m2)
nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy
nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy
từ đó ta tìm được diện tích là 308m2
Gọi chiều dài của tấm bìa là x (x > 3) (dm)
⇒ Chiều rộng của tấm bìa là x – 3 (dm)
Nếu tăng chiều dài 1 dm và giảm chiều rộng 1 dm thì diện tích là 66 d m 2 nên ta có phương trình:
(x + 1)(x – 3 – 1) = 66
⇔ (x + 1)(x – 4 ) = 66
⇔ x 2 – 3x – 4 – 66 = 0
⇔ x 2 – 3x – 70 = 0
Δ = 3 2 - 4.(-70) = 289 ⇒ ∆ = 17
⇒ Phương trình đã cho có 2 nghiệm
Do x > 3 nên x =10
Vậy chiều dài của tấm bìa là 10 dm
Chiều rộng của tấm bìa là 7 dm.
2 lần chiều dài bằng 3 lần chiều rộng
=>Chiều dài bằng 3/2 chiều rộng
Nửa chu vi hình chữ nhật là:
80:2=40(cm)
Chiều rộng hình chũ nhật là:
40:(2+3)x2=16(cm)
Chiều dài là:
16:2x3=24(cm)
Diện tích hình chữ nhật là:
24x16=384(cm2)
ĐÁP SỐ : 384cm2
Nửa chu vi hình chữ nhật là:
80 : 2 = 40 (cm)
Gọi chiều dài là x, chiều rộng là y (x;y>0)
Ta có hệ phương trình: \(\hept{\begin{cases}2x=3y\\x+y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-3y=0\\x+y=40\end{cases}}\)( x 3 cho phương trình 2 )
\(\Leftrightarrow\hept{\begin{cases}2x-3y=0\\3x+3y=120\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x=120\\x+y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=24\\24+y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=24\\y=16\end{cases}}\)
Diện tích hình chữ nhật là:
24 x 16 = 384 (cm2)
Đ/s:..
P/s: Giải = pp cộng đại số nhá
gọi chiều rộng là x (x<56:2) cm
chiều dài dài 4+x cm
vì chu vi hcn là 56 nên ta có pt
(x+(x+4))2=56
giải pt x=12
vậy chiều rộng hcn dài 12 cm
chiều dài hcn dài 4+12=16 cm
diện tích của hcn đó là 12*16=192 cm2
gọi chiều dài là x(cm) (x>4)
chiều rộng là x-4
theo bài ra ta có:
(x+(x-4))*2=56
<=>(x+x-4)*2=56
<=>(2x-4)*2=56
<=>4x-8=56
<=>4x=56+8
<=>4x=64
<=>x=16
vậy diện tích hình chữ nhật đó là 16*(16-4)=192(cm^2)
Gọi \(x,y\left(m\right)\) là chiều dài và rộng \(\left(x,y>0\right)\)
Theo đề, ta có :
\(\left\{{}\begin{matrix}y+3=x\\\left(x+4\right)\left(y+2\right)=xy+44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+y=-3\\xy+2x+4y+8=xy+44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+y=-3\\2x+4y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\left(tm\right)\\y=5\left(tm\right)\end{matrix}\right.\)
Diện tích hình chữ nhật ban đầu : \(8\times5=40\left(m^2\right)\)
Gọi a là chiều dài, b là chiều rộng HCN (a,b>0) (cm)
Từ 2 dữ kiện đề bài, ta lập hệ 2pt 2 ẩn:
\(\left\{{}\begin{matrix}a-b=6\\a.b=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+6\\\left(b+6\right).b-40=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=b+6\\b^2+6b-40=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+6\\\left[{}\begin{matrix}b=4\\b=-10\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}b=4\\a=10\end{matrix}\right.\\\left\{{}\begin{matrix}b=-10\left(loại\right)\\a=-16\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
HCN có chiều dài là 10(cm), chiều rộng 4(cm)