K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

A B C I D H kẻ AH,ID vuông góc với BC

do tam giác ABC cân ở A =>góc B= góc C=79'57'19', góc A=28'5'22''  

 BH=1/2 BC, góc BAH=góc CAH=góc A/2=14'2'41''

ID vuông góc BH,AH vuông góc với BH=>AH//ID, lại có IA=IB

=>BD=DH=>BD=1/2BH=1/4BC  =>CD=3/4 BC

do ID//AH=>góc BID=góc BAH=góc A/2=14'2'41''

tg góc BID=BD/ID=>ID=BD/tg BID =BC/4.tg BID

tg BCI=ID/DC=BC/4.tg BID.DC=BC/4.tg BID.3/4 BC =1/3.tg BID=1,332495264

=>góc BCI=53'6'46.11''=>góc ACI=75'57'19''-góc BCI=22'50'32.89''

24 tháng 3 2022

a. Xét 2 tam giác ABI và ACI:

     AI chung

      AB = AC(tam giác ABC cân tại A)

      IB = IC (I là trung điểm của BC)

    => tam giác ABI = tam giác ACI (c-c-c) (đpcm)

  => BI = CI (2 cạnh tương ứng)

  b. HI ⊥ AB => H = 90o

      KI ⊥ AC => K = 90o

       Xét tam giác HBI và tam giác KCI:

        H=K=90o

        BI = CI(cma)

       B = C (tam giác ABC cân tại A)

     => tam giác HBI = tam giác KCI

c. ta có tam giác HBI = tam giác ACI

    => AIB = AIC (2 góc tương ứng)

   Mà 2 góc này ở vị trí kề bù.

   => AIB = AIC= \(\dfrac{180^o}{2}\)= 90o

    => tam giác AIC vuông tại I

      Áp dụng định lí Py-ta-go vào tam giác AIC, ta có:

        AI= AC2 - IC2

              = 169 - 144 = 36

   => AI = 6 cm

16 tháng 11 2021

a: Xét ΔAIC và ΔAIB có

AI chung

IC=IB

AC=AB

Do đó: ΔAIC=ΔAIB

a: Xét ΔABI và ΔACI có

AB=AC
BI=CI

AI chung

Do đó: ΔABI=ΔACI

b: Xét tứ giác BDCE có

I là trung điểm chung của BD và CE

nên BDCE là hình bình hành

=>CE//AB

 

Mình làm phần d) thôi nhé!

Theo phần a) ta có được: \(\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng:

Tam giác ABI = Tam giác ACI)

mà \(\widehat{AIB}+\widehat{AIC}=180\)(2 góc kề bù)

=>\(\widehat{AIB}=\widehat{AIC}=90\)

Xét tam giác ABI vuông tại I, áp dụng định lí py-ta-go ta có:

\(AB^2=AI^2+BI^2\)(1)

Xét tam giác ADI vuông tại D, áp dụng định lí py-ta-go ta có:

\(AI^2=AD^2+DI^2\)(2)

Xét tam giác BDI vuông tại D, áp dụng định lí py-ta-go ta có:

\(BI^2=DI^2+BD^2\)(3)

Thay (2),(3) vào (1) ta có được:

\(AB^2=AD^2+DI^2+DI^2+BD^2\)

(hay) \(AB^2=AD^2+BD^2+2DI^2\)(ĐPCM)