Cho tam giác ABC cân tại A có góc B= 75*57'19''. Gọi I là trung điểm của AB. Tính góc ACI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét 2 tam giác ABI và ACI:
AI chung
AB = AC(tam giác ABC cân tại A)
IB = IC (I là trung điểm của BC)
=> tam giác ABI = tam giác ACI (c-c-c) (đpcm)
=> BI = CI (2 cạnh tương ứng)
b. HI ⊥ AB => H = 90o
KI ⊥ AC => K = 90o
Xét tam giác HBI và tam giác KCI:
H=K=90o
BI = CI(cma)
B = C (tam giác ABC cân tại A)
=> tam giác HBI = tam giác KCI
c. ta có tam giác HBI = tam giác ACI
=> AIB = AIC (2 góc tương ứng)
Mà 2 góc này ở vị trí kề bù.
=> AIB = AIC= \(\dfrac{180^o}{2}\)= 90o
=> tam giác AIC vuông tại I
Áp dụng định lí Py-ta-go vào tam giác AIC, ta có:
AI2 = AC2 - IC2
= 169 - 144 = 36
=> AI = 6 cm
a: Xét ΔAIC và ΔAIB có
AI chung
IC=IB
AC=AB
Do đó: ΔAIC=ΔAIB
a: Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
b: Xét tứ giác BDCE có
I là trung điểm chung của BD và CE
nên BDCE là hình bình hành
=>CE//AB
Mình làm phần d) thôi nhé!
Theo phần a) ta có được: \(\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng:
Tam giác ABI = Tam giác ACI)
mà \(\widehat{AIB}+\widehat{AIC}=180\)(2 góc kề bù)
=>\(\widehat{AIB}=\widehat{AIC}=90\)
Xét tam giác ABI vuông tại I, áp dụng định lí py-ta-go ta có:
\(AB^2=AI^2+BI^2\)(1)
Xét tam giác ADI vuông tại D, áp dụng định lí py-ta-go ta có:
\(AI^2=AD^2+DI^2\)(2)
Xét tam giác BDI vuông tại D, áp dụng định lí py-ta-go ta có:
\(BI^2=DI^2+BD^2\)(3)
Thay (2),(3) vào (1) ta có được:
\(AB^2=AD^2+DI^2+DI^2+BD^2\)
(hay) \(AB^2=AD^2+BD^2+2DI^2\)(ĐPCM)
A B C I D H kẻ AH,ID vuông góc với BC
do tam giác ABC cân ở A =>góc B= góc C=79'57'19', góc A=28'5'22''
BH=1/2 BC, góc BAH=góc CAH=góc A/2=14'2'41''
ID vuông góc BH,AH vuông góc với BH=>AH//ID, lại có IA=IB
=>BD=DH=>BD=1/2BH=1/4BC =>CD=3/4 BC
do ID//AH=>góc BID=góc BAH=góc A/2=14'2'41''
tg góc BID=BD/ID=>ID=BD/tg BID =BC/4.tg BID
tg BCI=ID/DC=BC/4.tg BID.DC=BC/4.tg BID.3/4 BC =1/3.tg BID=1,332495264
=>góc BCI=53'6'46.11''=>góc ACI=75'57'19''-góc BCI=22'50'32.89''