Tìm a để \(\frac{3-4a}{1+a^2}\)đạt GTNN.. tìm GTNN đó
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
ND
0
PQ
2
13 tháng 1 2018
Ta có: \(\left|x-2\right|\ge x-2\)
\(\left|x-3\right|\ge0\)
\(\left|x-4\right|=\left|4-x\right|\ge4-x\)
\(\Rightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2\ge0\\x-3=0\\x-4\le0\end{cases}\Rightarrow}x=3\)
DT
1
HH
1
16 tháng 1 2017
\(A=2x^2+9y^2-6xy-6x-12y+2036\)
\(=x^2-10x+25+x^2-6xy+9y^2+4x-12y+4+2007\)
\(=\left(x-5\right)^2+\left(x-3y\right)^2+4\left(x-3y\right)+4+2007\)
\(=\left(x-5\right)^2+\left(x-3y+2\right)^2+2007\)
\(\Rightarrow A\ge2007\)
Dấu "=" xảy ra khi \(x=5,y=\frac{7}{3}\)
TT
0
Đặt \(A=\frac{3-4a}{1+a^2}\)
Gọi k là một giá trị của A
=> \(A=\frac{3-4a}{a^2+1}=k\)
=> ka2 + k = 3 - 4a
<=> a2k + 4a + k - 3 = 0
<=> a2k2 + 4ak + k2 - 3k = 0 (cùng nhân cả 2 vế với k)
<=> (a2k2 + 4ak + 4) + (k2 - 3k - 4) = 0
Vì a2k2 + 4ak + 4 = (ak + 2)2 \(\ge\) 0 với mọi a, k
=> k2 - 3k - 4 \(\le\) 0
\(\Leftrightarrow\left(k+1\right)\left(k-4\right)\le0\)
\(\Leftrightarrow-1\le k\le4\)
Vậy GTNN của A là -1. Bài đầu trong ngày, hy vọng không sai ^_^