Bài 3 : Cho tam giác nhọn ABC, hai đường cao BF và CE.
a) Chứng minh tam giác AFB ~ tam giác AEC rồi suy ra AE.AB = AF.AC
b) Chứng minh góc AFE = góc ABC
c) Nếu Â=60 độ, SABC = 100cm2, tính SAFE ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAFB vuông tại F và ΔAEC vuông tại E có
góc A chung
=>ΔAFB đồng dạng với ΔAEC
=>AF/AE=AB/AC
=>AF*AC=AB*AE
b: Xét ΔAFE và ΔABC có
AF/AB=AE/AC
góc A chung
=>ΔAFE đồng dạng với ΔABC
c: \(\dfrac{S_{AFE}}{S_{ABC}}=\left(\dfrac{AF}{AB}\right)^2=\dfrac{1}{4}\)
=>\(S_{AFE}=25\left(cm^2\right)\)
a: Xet ΔAFB vuông tại F và ΔAEC vuông tại E có
góc A chung
=>ΔAFB đồng dạng với ΔAEC
b: ΔAFB đồng dạng với ΔAEC
=>AF/AE=AB/AC
=>AF*AC=AB*AE
=>AF/AB=AE/AC
=>ΔAFE đồng dạng với ΔABC
c: Xét ΔBDH vuông tại D và ΔBFC vuông tại Fco
góc DBH chung
=>ΔBDH đồng dạng với ΔBFC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
Do đó: ΔABD∼ΔACE
Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AD\cdot AC\)
b: XétΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
Do đó: ΔADE∼ΔABC
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
góc BAM chung
=>ΔABM đồng dạng với ΔACN
=>AM/AN=AB/AC
=>AM*AC=AN*AB và AM/AB=AN/AC
b: Xét ΔAMN và ΔABC có
AM/AB=AN/AC
góc MAN chung
=>ΔAMN đòng dạng với ΔABC
c: ΔAMN đồng dạng với ΔABC
=>S AMN/S ABC=(AM/AB)^2=(cos60)^2=1/4
=>S ABC=4*S AMN