K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔACB vuông tại A co AH vuông góc BC

nên AB^2=BH*BC

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=16/8=2

=>AD=6cm

1 tháng 10 2023

Áp dụng định lý Py-ta-go vào tam giác vuông ABC ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}\)

\(\Rightarrow AC=\sqrt{20^2-12^2}=16\left(cm\right)\)

Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{16}{20}\)

\(\Rightarrow sinB=\dfrac{4}{5}\Rightarrow\widehat{B}\approx53^o\)

\(\Rightarrow\widehat{C}=180^o-90^o-53^o\approx37^o\)

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Vậy: \(AB=4\sqrt{5}cm\)

Bài 2: 

Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:

\(MP^2=MN^2+NP^2\)

\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)

hay MN=4cm

Vậy: MN=4cm

9 tháng 2 2021

Bài 1 :

- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)

\(\Leftrightarrow AB^2+8^2=12^2\)

\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )

Vậy ...

Bài 2 :

- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :

\(MN^2+NP^2=MP^2\)

\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)

\(\Leftrightarrow MN=4\) ( đvđd )

Vậy ...

 

 

\(S=\dfrac{12\cdot9}{2}=6\cdot9=54\left(cm^2\right)\)

2 tháng 1 2022

bổ sung
A. 108cm2 B. 54cm C. 54cm2 D. 15cm2

8 tháng 2 2021

A B C 16 12 H

1) Có \(\Delta ABC\) vuông 

=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)

2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :

 AB +  AC2 =  BC2

=> 162 + 122 = BC2

=> 400            = BC2

=> BC             = 20 (cm)

Ta có :  S\(\Delta ABC\)  =  S\(\Delta ABH\)  +  S\(\Delta ACH\)

=>  \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)

=>  \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)

=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)

=> \(\dfrac{AH.BC}{2}\)               =  96

=> AH                         =  96 .  \(\dfrac{2}{BC}\) = 96 .  \(\dfrac{2}{20}\) = 9.6 (cm)

3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :

    BH2 = AB2 - AH2

=>BH= 162 - 9.62 = 163.84

=> BH = 12.8 (cm)

=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)

 

5 tháng 1 2022

Áp dụng định lí PTG: \(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)

Vậy \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot12\cdot16=96\left(cm^2\right)\)

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay \(BC=\sqrt{193}\left(cm\right)\)

Xét ΔABC vuông tại A có

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{\sqrt{193}}\)

\(\Leftrightarrow\widehat{B}\simeq60^0\)

\(\Leftrightarrow\widehat{C}=30^0\)

Bài 2: 

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

c: \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)

1:

BC=15+20=35cm

AD là phân gíac

=>AB/BD=AC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=35^2

=>k=7

=>AB=21cm; AC=28cm

AH=21*28/35=16,8cm

\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)

2:

BC=căn 12^2+16^2=20cm

HB=AB^2/BC=12^2/20=7,2cm

HC=20-7,2=12,8cm

28 tháng 2 2022

tôi ko bt, lêu lêu

28 tháng 2 2022

?