K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

\(S=2^1+2^2+2^3+...+2^{100}\)
\(S=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(S=\left(2^1+2^2\right)+2^2\left(2^1+2^2\right)+...+2^{98}\left(2^1+2^2\right)\)
\(S=\left(2^1+2^2\right).\left(1+2^2+...+2^{98}\right)\)
\(S=6.\left(1+2^2+...+2^{98}\right)⋮3\)

5 tháng 5 2017

S=21+22+23+...+2100$S=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)$S=(21+22)+(23+24)+...+(299+2100)$S=\left(2^1+2^2\right)+2^2\left(2^1+2^2\right)+...+2^{98}\left(2^1+2^2\right)$

a có : abc chia hết cho 21

=> 100a+10b+c chia hết cho 21

=> 84a+16a+10b + c chia hết cho 21 

=> 16a+10b+c chia hết cho 21

=> 64a+40b+4c chia hết cho  21

=> 63a+a+42b-2b+4c chia hết cho 21

=> a-2b+4c chia hết cho 21

HT

Ta có : abc chia hết cho 21

=> 100a+10b+c chia hết cho 21

=> 84a+16a+10b + c chia hết cho 21 

=> 16a+10b+c chia hết cho 21

=> 64a+40b+4c chia hết cho  21

=> 63a+a+42b-2b+4c chia hết cho 21

=> a-2b+4c chia hết cho 21

HT

17 tháng 10 2021

Ta có:

abc \(=\) \(100a+10b+c\)

\(=\)\(100a-8b+10b-42b+c+63c+84a+42b-63c\)

\(=\)\(16a-32b+64c+84a+42b-63c\)

\(=\)\(16\left(a-2b+4c\right)+84a+42b-63c\)

Áp dụng tính chất chia hết của tổng, ta có:

\(\hept{\begin{cases}abc⋮21\\84a+42b-63c⋮21\end{cases}\Leftrightarrow\left(a-2b+4c\right)⋮21}\)

26 tháng 10 2015

(1+4+42)+(43+44+45)+...+(41998+41999+42000)

=21+43(1+4+42)+...+41998(1+4+42)

=21+43.21+...+41998.21

=21(43+...+41998) chia hết cho 21

12 tháng 4 2016

1 giờ ô tô đi  lúc đi số phần là :

                     1:45=1/45(h)

1 giờ ô tô đi  lúc về  số phần là :

                       1/60=1/60(h)

1 giờ ô tô đi cả đi và  lúc về  số phần là :

                      1/45+1/60=7/180(h)

Quãng đường BC là:

                       14:7/180=360(km)

nha bạn              

12 tháng 4 2016

con dien

7 tháng 7 2015

a)A=1+4+4^2+4^3+...+4^11

=(1+4+42)+(43+44+45)+(46+47+48)+(49+410+411)

=(1+4+42)+(43.1+43.4+43.42)+(46.1+46.4+46.42)+(49.1+49.4+49.42)

=(1+4+42).1+43.(1+4+42)+46.(1+4+42)+49.(1+4+42)

=21.1+43.21+46.21+49.21

=21.(1+43+46+49)

=> A chia het cho 21

b)A=1+4+4^2+4^3+...+4^11

=(1+4+42+43+44+45)+(46+47+48+49+410+411)

=(1+4+42+43+44+45)+(46.1+46.4+46.42+46.43+46.44+46.45)

=(1+4+42+43+44+45).1+46.(1+4+42+43+44+45)

=1365.1+46.1365

=1365.1+46.1365

=1365.(1+46)

vì nên 1365 chia hết cho 105 nên A chia het cho 105

14 tháng 10 2017

Còn phần c nưa bạn trieu dang ơi

8 tháng 11 2017

4 + 4^3 + 4^5 + 4^7 + ... + 4^23

= ( 4 + 4^3 ) + ( 4^5 + 4^7 ) +.....+ ( 4^22 + 4^23)

=4( 1+16 ) + 4^5( 1+16 ) +....+ 4^22( 1+ 16 )

=4 x 17 + 4^5 x 17+....+ 4^22 x 17 chia hết cho 68

Câu 2:

1+3+3^2+3^3+....+3^2000

=( 1+3 +3^2 ) + ( 3^3 + 3^4 + 3^5 ) +.....+ ( 3^ 1998 + 3^1999 + 3^2000)

=1( 1+ 3 + 9 ) + 3^3 + ( 1+ 3 + 9 ) +......+ 3^1998+( 1+ 3 + 9 )

= 1 x 13+ 3^3 x 13 +......+ 3^1998 x 13 chia hết cho 13

k mk nha lần sau mk k lại

8 tháng 11 2017

Câu 1 nha : 4+4^3+4^5+4^7+....+4^23 = (4+4^3)+(4^5+4^7)+....+(4^21+4^23)

= 68 + 4^4.(4+4^3)+....+4^20.(4+4^3) = 68 + 4^4.68 + .... + 4^20.68

=68.(1+4^4+....+4^20) chia hết cho 68

Câu 2 nha 1+3+3^2+...+3^2000 = (1+3+3^2)+(3^3+3^4+3^5)+....+(3^1998+3^1999+3^2000)

= 13 + 3^3.(1+3+3^2)+....+3^1998.(1+3+3^2) = 13+3^3.13+....+3^1998.13

=13.(1+3^3+....+3^1998) chia hết cho 13