K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔAEB vuông tại E và ΔAFC vuông tại F có

góc A chung

=>ΔAEB đồng dạng với ΔAFC

b: ΔAEB đồng dạng vói ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF
=>AE/AB=AF/AC

=>ΔAEF đồg dạng vói ΔABC

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(AE\cdot AC=AB\cdot AF\)

Ta có: \(AE\cdot AC=AB\cdot AF\)(cmt)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

12 tháng 4 2023

`a,` CM `AE.AC=AF.AB`

Xét \(\Delta ABE\) và \(\Delta AFC\) ta có :

\(\left\{{}\begin{matrix}\widehat{A}:chung\\\widehat{AEB}=\widehat{AFC}=90^o\end{matrix}\right.\)

Do đó \(\Delta ABE\sim\Delta AFC\left(g.g\right)\)

`=> (AE)/(AF)=(AB)/(AC)`

`<=>AE .AC = AF .AB->đpcm`

`b,` Xét \(\Delta AEF\) và \(\Delta ABC\) có :

\(\left\{{}\begin{matrix}\widehat{B}:chung\\\dfrac{AE}{AB}=\dfrac{AF}{AC}\left(cmt\right)\end{matrix}\right.\)

Do đó \(\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)

`c,` Xét \(\Delta BFC\) và \(\Delta BDA\) có :

\(\left\{{}\begin{matrix}\widehat{B}:chung\\\widehat{BFC}=\widehat{BDA}=90^o\end{matrix}\right.\)

Do đó \(\Delta BFC\sim\Delta BDA\left(g.g\right)\)

\(\Rightarrow\dfrac{BF}{BD}=\dfrac{BC}{BA}\Rightarrow\dfrac{BF}{BC}=\dfrac{BD}{BA}\)

Xét \(\Delta BHD\) và \(\Delta BCA\) có :

\(\left\{{}\begin{matrix}\widehat{B}:chung\\\dfrac{BF}{BC}=\dfrac{BD}{BA}\left(cmt\right)\end{matrix}\right.\)

Do đó \(\Delta BFD\sim\Delta BCA\left(c.g.c\right)\)

`d,` Xét \(\Delta CDH\) và \(\Delta CFB\) có :

\(\left\{{}\begin{matrix}\widehat{C}:chung\\\widehat{CDH}=\widehat{CFB}=90^o\end{matrix}\right.\)

Do đó \(\Delta CDH\sim\Delta CFB\left(g.g\right)\)

\(\Rightarrow\dfrac{CF}{CD}=\dfrac{CB}{CH}\)

\(\Rightarrow\dfrac{CF}{CB}=\dfrac{CD}{CH}\)

`e,` vì \(\Delta AEF\sim\Delta ABC\) ( cm câu `b` ) nên

\(\widehat{F_2}=\widehat{C}\) ( hai góc tương ứng )

Mà \(\widehat{F_2}=\widehat{F_1}\)  ( đối đỉnh )

Nên \(\widehat{C}=\widehat{F_1}\)

Xét \(\Delta IFB\) và \(\Delta IEC\) có :

\(\left\{{}\begin{matrix}\widehat{I}:chung\\\widehat{F_1}=\widehat{C}\left(cmt\right)\end{matrix}\right.\)

Do đó \(\Delta IFB\sim\Delta ICE\left(g.g\right)\)

\(\Rightarrow\dfrac{IF}{IC}=\dfrac{IB}{IE}\)

Vậy `IF.IE=IB.IC->đpcm`

Cậu tự vẽ hình ra đc ko ạ 

12 tháng 4 2023

chăm qá ha :)

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AE/AB=AF/AC và AE*AC=AB*AF

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

=>góc AEF=góc ACB

c; góc AFH=góc AEH=90 độ

=>AFHE nội tiếp (I)

=>IF=IE

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp (M)

=>MF=ME

=>MI là trung trực của EF

=>MI vuông góc EF

a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co

góc B chung

=>ΔBDA đồng dạng vói ΔBFC

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng vói ΔACB

c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

=>ΔAEH đồng dạng vói ΔADC

=>AD*AH=AE*AC

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

góc ECH chung

=>ΔCEH đồng dạng vói ΔCFA

=>CH*CF=CE*CA

=>AH*AD+CH*CF=CA^2

30 tháng 6 2019

Ad ĐỪNG XÓA 

 Học tiếng anh free vừa học vừa chơi đây 

các bạn vào đây đăng kí nhá :   https://iostudy.net/ref/165698

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB∼ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF∼ΔABC(c-g-c)

18 tháng 7 2016

xét tam giác  abe va acf

co ;goc f=goc e =90

goc a chung 

 2 tam giuac dong dang 

 

29 tháng 4 2019

A B C D H E F

a) Xét ΔABE và ΔACE có:

\(\widehat{AEB}=\widehat{AFC}\) \(=90^0\)

\(\widehat{CAB}:chung\)

=> ΔABE∼ΔACE (g.g)

b) Xét ΔFHB và ΔEHC có:

\(\widehat{HFB}=\widehat{HEC}\) \(=90^0\)

\(\widehat{FHB}=\widehat{EHC}\) (2 góc đối đỉnh)

=> ΔFHB∼ΔEHC (g.g)

=> \(\frac{HF}{HE}=\frac{HB}{HC}\Leftrightarrow HF.HC=HB.HE\) (đpcm)

c) Theo câu a) ta có: ΔABE∼ΔACF

=> \(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét ΔBAC và ΔEAF có:

\(\widehat{BAC}:chung\)

\(\frac{AB}{AC}=\frac{AE}{AF}\) (cmtrn)

=> ΔBAC∼ΔEAF (c.g.c)

=> \(\widehat{AEF}=\widehat{ABC}\) (2 góc tương ứng)

29 tháng 4 2016
T.giac vuong Abe ~ t.giac vuông afc ( a chung) b/ t.giac vuông hfb ~ t.giac vuông hec ( h1= h2 do đối đỉnh) => he.hb=hc.hf C/ afe ~ abc => AF/AE=AC/AB ( 1) A CHUNG => T.GIAC afe ~ t.giac acb => góc aef = góc abc D/ t.giac bec ~ adc ( tự cm) => AC/BC=DC/EC AC/BC = DC/EC ,góc C CHUNG => t giac CED ~ t.giac CBA mà t.giac cba ~ vs t giac FEA => t.giac FEA ~ VS T.giac CED => góc aef = ced mà aef + feb = 90* Ced + deb =90* Nên goc feb = góc deb => BE LÀ p.g góc DEF :)) lm biếng viết hoa pn thông cảm đọc nha
15 tháng 4 2017

Nguyễn Trọng Phúc cho mình hỏi tại sao AC/BC = DC/EC?