Cho Tam giác ABC vuông tại A ,kẻ phân giác BD,Kẻ DE vuông góc với BC(E thuộc BC) gọi F là Giao điểm của BA và ED.Cho tam giác BAD=tam giác BED,Tam giác CDF là tam giác cân.Chứng minh AE//CF
THANKS AI ĐÚNG MÌNH TICK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: AB=BE(hai cạnh tương ứng)
b) Ta có: ΔABD=ΔEBD(cmt)
nên DA=DE(hai cạnh tương ứng)
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(hai cạnh tương ứng)
Xét ΔDFC có DF=DC(cmt)
nên ΔDFC cân tại D(Định nghĩa tam giác cân)
c) Ta có: ΔADF=ΔEDC(cmt)
nên AF=EC(Hai cạnh tương ứng)
Ta có: BA+AF=BF(A nằm giữa B và F)
BE+EC=BC(E nằm giữa B và C)
mà BA=BE(cmt)
và AF=EC(Cmt)
nên BF=BC
Xét ΔBAE có BA=BE(cmt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Ta có: ΔBAE cân tại B(cmt)
nên \(\widehat{BAE}=\dfrac{180^0-\widehat{B}}{2}\)(Số đo của một góc ở đáy trong ΔBAE cân tại B)(1)
Xét ΔBFC có BF=BC(cmt)
nên ΔBFC cân tại B(Định nghĩa tam giác cân)
Ta có: ΔBFC cân tại B(cmt)
nên \(\widehat{BFC}=\dfrac{180^0-\widehat{B}}{2}\)(Số đo của một góc ở đáy trong ΔBFC cân tại B)(2)
Từ (1) và (2) suy ra \(\widehat{BAE}=\widehat{BFC}\)
mà \(\widehat{BAE}\) và \(\widehat{BFC}\) là hai góc ở vị trí đồng vị
nên AE//FC(Dấu hiệu nhận biết hai đường thẳng song song)
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc EBF chung
=>ΔBEF=ΔBAC
=>BF=BC
c: ΔBFC can tai B
mà BD là phân giác
nên BD là trung tuyến
a) Xét 2 tg vuông BAD và BED có:
BD là cạnh chung
góc ABD = góc EBD (BD là phân giác góc B)
\(\Rightarrow\) \(\Delta\) vuông BAD = \(\Delta\) vuông BED (cạnh huyền - góc nhọn)
\(\Rightarrow\) AB = AE (2 cạnh tương ứng)
b) Xét 2 tg vuông DAF và DEC có:
DA = DE(2 cạnh tương ứng do tg BAD = tg BED)
góc ADF = góc EDC (đối đỉnh)
\(\Rightarrow\) \(\Delta\) vuông DAF = \(\Delta\) vuông DEC (cạnh góc vuông - góc nhọn)
\(\Rightarrow\) DF = DC (2 cạnh tương ứng)
\(\Rightarrow\Delta CDF\) là tg cân
a; Xét ΔBAD vuôg tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc B chung
=>ΔBEF=ΔBAC
=>BF=BC
c: ΔCBF cân tại B
mà BD là phân giác
nên BD là trung tuyến