K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Lời giải:

a. Xét tam giác $ABH$ và $ACH$ có:

$AB=AC$ (do $ABC$ cân tại $A$)

$AH$ chung

$BH=CH$ (do $H$ là trung điểm $BC$)

$\Rightarrow \triangle ABH=\triangle ACH$ (c.c.c)

b. Từ tam giác bằng nhau phần a suy ra $\widehat{AHB}=\widehat{AHC}$ 

Mà $\widehat{AHB}+\widehat{AHC}=\widehat{BHC}=180^0$

$\Rightarrow \widehat{AHB}=\widehat{AHC}=90^0$

$\Rightarrow AH\perp BC$

Vậy $AH\perp BC$ tại trung điểm $H$ của $BC$ nên $AH$ là trung trực $BC$

c. Xét tam giác $ABH$ và $ICH$ có:

$\widehat{AHB}=\widehat{IHC}$ (đối đỉnh) 
$AH=IH$ 
$BH=CH$ 

$\Rightarrow \triangle ABH=\triangle ICH$ (c.g.c)

$\Rightarrow \widehat{ABH}=\widehat{ICH}$ 

Mà 2 góc này ở vị trí so le trong nên $IC\parallel AB$

Từ tam giác bằng nhau ở trên suy ra $\widehat{CIH}=\widehat{BAH}(1)$

Từ tam giác bằng nhau phần a suy ra $\widehat{BAH}=\widehat{CAH}(2)$

Từ $(1); (2)\Rightarrow \widehat{CIH}=\widehat{CAH}$ 

 

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Hình vẽ:

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: ΔABC cân tại A

mà AH là đường cao

nên AH là trung trực của BC

c: Xét tứ giác ABIC có

H là trung điểm chung của AI và BC

AI vuông góc bC

=>ABIC là hình thoi

=>IC//AB và IC=AB

=>CA=CI

=>góc CAH=góc CIH

10 tháng 8 2023

Tốt v a=))

22 tháng 1 2020

Xem lại đề câu a

A B C H I = = x x

  GT 

 △ABC: AB = AC. HC = HB = BC/2.  HA = HI

  KL

 a, ?

 b, AH là đường trung trực của BC

 c, IC // AB

 d, CAH = CIH

Bài giải:

a, Xem lại đề

b, Xét △AHB và △AHC 

Có: AB = AC (gt)

      BH = HC (gt)

  AH là cạnh chung

=> △AHB = △AHC (c.c.c)

=> AHB = AHC (2 góc tương ứng)

Mà AHB + AHC = 180o (2 góc kề bù)

=> AHB = AHC = 180o : 2 = 90o

=> AH ⊥ BC

Mà HB = HC

=> AH là đường trung trực của BC

c, +) Nếu học trường hợp bằng nhau của tam giác vuông r thì trình bày như này cũng đc nè :))

C1: Xét △AHB vuông tại H và △IHC vuông tại H

Có: AH = HI (gt)

       HB = HC (gt) 

=> △AHB = △IHC (2cgv)

=> ABH = HCI (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le tron

=> AB // IC

+) Còn chưa học thì trình bày vậy:

C2: Xét △AHB và △IHC

Có: AH = HI (gt)

    AHB = IHC (2 góc đối đỉnh)

      HB = HC (gt)

=> △AHB = △IHC (c.g.c)

=> ABH = HCI (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le tron

=> AB // IC

+) Nói chung trình bày cách nào cũng đc nếu học hết rồi 

d, Vì △AHB = △IHC (cmt) => HAB = HIC (2 góc tương ứng)

Mà HAB = HAC (△AHB = △AHC)

=> HIC = HAC (đpcm)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Xét tứ giác ABKH có

I là trung điểm chung của AK và BH

=>ABKH là hbh

=>BK//AH

=>BK vuông góc BC

c: KB=AH

AH<AB

=>KB<AB

d: Xét ΔBCK có CH/CB=CM/CK

nên HM//BK

=>HM vuông góc BC

mà AH vuông góc BC

nên A,H,M thẳng hàng

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔAHC

Suy ra: BH=CH

hay H là trung điểm của BC

b: Xét ΔABH vuông tại H và ΔDCH vuông tại H có

HB=HC

HA=HD

Do đó: ΔABH=ΔDCH

c: Ta có: ΔABH=ΔDCH

nên AB=DC

mà AB=AC

nên DC=AC

hay ΔACD cân tại C

19 tháng 2 2020

Áp dụng đl Pi ta go đảo cho Tam giác ABC

=>AB2+CA2=BC2

=>152+362=392

=>1521=1521

=>Tam giác ABC vuông tại A 

Áp dụng đl pi ta go cho tam giác ABH

=>AB2=AH2+BH2

=>152=92+BH2

=>BH2=225-81=144=122

=>BH=12

Vậy...

19 tháng 2 2020

Chứng minh phần e hộ mik với

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

b) Xét ΔAMD và ΔCMH có 

MA=MC(gt)

\(\widehat{AMD}=\widehat{CMH}\)(hai góc đối đỉnh)

MD=MH(gt)

Do đó: ΔAMD=ΔCMH(c-g-c)

Suy ra: AD=HC(Hai cạnh tương ứng)

c) Ta có: ΔAMD=ΔCMH(cmt)

nên \(\widehat{MAD}=\widehat{MCH}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//HC(Dấu hiệu nhận biết hai đường thẳng song song)

hay AD//HB

Xét tứ giác ABHD có 

AD//BH(cmt)

AD=BH(=HC)

Do đó: ABHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: AB//DH(Hai cạnh đối)

1.Cho tam giác có góc A = 60 độ và AB<AC . Trên cạnh AC lấy điểm D sao cho AD=AB. Tia phân giác của góc A cắt BC ở Ea.Chứng minh tam giác ABE = tam giác ADEb.AE cắt BD tại I .Chứng minh I là trung điểm của BDc.Trên tia AI lấy điểm H sao cho IA=IH. Chứng minh AB song song với HD d.Tính số đo góc ABD2.Cho tam giác ABC vuông tại A có góc B = 2 Góc C a.Tính số đo của góc B và C của Tam giác ABCb.Kẻ AH vuông góc với BC (...
Đọc tiếp

1.Cho tam giác có góc A = 60 độ và AB<AC . Trên cạnh AC lấy điểm D sao cho AD=AB. Tia phân giác của góc A cắt BC ở E

a.Chứng minh tam giác ABE = tam giác ADE

b.AE cắt BD tại I .Chứng minh I là trung điểm của BD

c.Trên tia AI lấy điểm H sao cho IA=IH. Chứng minh AB song song với HD 

d.Tính số đo góc ABD

2.Cho tam giác ABC vuông tại A có góc B = 2 Góc C 

a.Tính số đo của góc B và C của Tam giác ABC

b.Kẻ AH vuông góc với BC ( H thuộc BC) .Trên tia HC lấy D sao cho H là trung điểm của BD .Chứng minh Tam giác ABH= tam giác AHD

c.Chứng minh AD= Cd

d.TRên tia đối của HA lấy K sao cho HK= HA. Chứng minh KD là đường trung trực của AC.

3.Cho tam giác ABC có góc A= 90 độ ( AB<AC) kẻ AH vuông góc với BC ,. Trên Bc lấy I sao cho HI=HB. Trên tia đối của HA lấy K sao cho HK=HA

a.chứng minh tam giác ABH=tam giác KIH

b.Chứng minh AB song song với KI

c.Vẽ IE vuông góc với AC tại E . Chứng minh K, I,E thẳng hàng 

Giải giúp mình với các bạn . Mình cần rất gấp . Mai phải nộp rồi

Thanks nhiều nghen

1
9 tháng 5 2021

xét tam giác ABE và tam giác ADE 

AE chung 

góc BAE = góc DAE(AE la tia phân giác của góc E)

AB = AD ( gt)

=> tam giác ABE = tam giac DAE  ( c.g.c)

b) xét tam giác  ABI và tam giác ADI

AI chung 

góc BAE =  góc DAE 

tam giác  ABI=tam giác ADI

=> BI = DI ( 2 cạnh t/ứ )

=> I là trung điểm của BD

26 tháng 12 2016

Vẽ nháp bằng tay, hình không đẹp cho lắm :v Bài viết có hơi lỗi.

Bài toán phụ : Chứng minh tam giác vuông có 1 góc 60 độ thì cạnh góc vuông nhỏ hơn sẽ bằng 1 nửa cạnh huyền.

Tam giác MNP vuông tại M có góc N là 60 độ.

Trên tia đối tia MN lấy điểm Q sao cho MQ=MN

Tam giác NPQ có PM vừa là trung tuyến vừa là đường cao nên cân tại P, mà lại có 1 góc 60 độ nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều), từ đó suy ra NQ = NP, mà NQ= 2MN nên MN = \(\frac{1}{2}\)NP, bài toán được chứng minh.

Tương tự với bài toán của chúng ta :

\(\Delta ABC\)vuông tại Acó \(\widehat{B}=60^o\) \(\Rightarrow AB=\frac{1}{2}BC\)

\(\Delta ABH\)vuông tại H có \(\widehat{B}=60^o\) \(\Rightarrow HB=\frac{1}{2}AB\)

\(\Rightarrow HB=\frac{1}{4}BC\)

Trước hết \(\Delta ABH\) vuông tại H có \(\widehat{B}=60^o\)

 nên \(\widehat{HAB}=90^o-60^o=30^o\)Mà \(\widehat{DAH}+\widehat{HAB}=\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{DAH}=60^o\)

\(\Delta DAH\)cân tại A ( AD = AH ), có góc DAH là 60o nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều )

Như vậy AI là đường cao đồng thời cũng là phân giác góc DAH

\(\Rightarrow\widehat{IAH}=\frac{1}{2}\widehat{DAH}=\frac{60^o}{2}=30^o\)

\(\Rightarrow\widehat{KAB}=\widehat{IAH}+\widehat{HAB}=30^o+30^o=60^o\)

\(\Delta KAB\)có \(\widehat{KAB}=\widehat{KBA}=60^o\) nên là tam giác đều

\(\Rightarrow KB=AB\)

Mà \(HB=\frac{1}{2}AB\Rightarrow HB=\frac{1}{2}KB\), hay H là trung điểm của KB.

Vậy ....

26 tháng 12 2016

dung roi