K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Lời giải:
$B=4x^2-4x-3|2x-1|+3=(4x^2-4x+1)-3|2x-1|+2$

$=(2x-1)^2-3|2x-1|+2=|2x-1|^2-3|2x-1|+2$

$=(|2x-1|-1,5)^2+\frac{1}{4}\geq \frac{1}{4}$

Vậy $B_{\min}=\frac{1}{4}$. Giá trị này đạt tại $|2x-1|=1,5$

$\Leftrightarrow x=\frac{5}{4}$ hoặc $x=\frac{-1}{4}$

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

4 tháng 9 2021

\(A=x^2+4x+5=\left(x+2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow x=-2\)

\(B=x^2+10x-1=\left(x+5\right)^2-26\ge-26\)

Dấu \("="\Leftrightarrow x=-5\)

\(C=5-4x+4x^2=\left(2x-1\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)

\(D=x^2+y^2-2x+6y-3=\left(x-1\right)^2+\left(y+3\right)^2-13\ge-13\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

\(E=2x^2+y^2+2xy+2x+3=\left(x+y\right)^2+\left(x+1\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow x=-y=-1\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

\(A=x^2+4x+5\)

\(=x^2+4x+4+1\)

\(=\left(x+2\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi x=-2

\(C=4x^2-4x+5\)

\(=4x^2-4x+1+4\)

\(=\left(2x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)

\(\Leftrightarrow V\ge-1\forall x\)

Dấu '=' xảy ra khi x=1

23 tháng 7 2017

Áp dụng HĐT số 1;2 ta có :

a ) \(x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1\)

b ) \(4x^2+4x-3=\left(4x^2+4x+1\right)-4=\left(2x+1\right)^2-4\ge-4\)

23 tháng 7 2017

a)x2-2x+2=(x2-2x+1)+1=(x-1)2+1\(\ge\)1 .....Dấu "=" xảy ra <=>x-1=0<=>x=1

b)4x2+4x-3=(4x2+4x+1)-4=(2x+1)2-4\(\ge\)-4......dấu"=" xảy ra <=>2x+1=0<=>x=-1/2

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được