K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

a, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};...;\frac{1}{10^2}>\frac{1}{10.11}\)

\(\Rightarrow S>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)

Vậy S > 9/22

b, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{10^2}< \frac{1}{9.10}\)

\(\Rightarrow S>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)

Vậy S > 9/10

25 tháng 2 2017

2.a) Vào question 126036

b) Vào question 68660

12 tháng 4 2017

a)ta có:

\(\frac{3}{10}\)>\(\frac{3}{15}\)

\(\frac{3}{11}\)>\(\frac{3}{15}\)

...

\(\frac{3}{14}\)>\(\frac{3}{15}\)

Cộng từng vế của bất đẳng thức trên ta được:

\(\frac{3}{10}\)+\(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)<\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)

Hay S>\(\frac{15}{15}\)=>S>1               (1)

ta có :

\(\frac{3}{11}\)<\(\frac{3}{10}\)

\(\frac{3}{12}\)<\(\frac{3}{10}\)

...

\(\frac{3}{14}\)<\(\frac{3}{10}\)

Cộng từng vế của bất đẳng thức trên ta được:

\(\frac{3}{10}\)+\(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)<\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)

Hay S<\(\frac{15}{10}\)<\(\frac{20}{10}\)=2

Vậy S<2                    (2)

Theo câu 1 ta có : S>1

Theo câu 2 ta có :S<2

Vậy 1<S<2 

=>S ko phải số tự nhiên

28 tháng 2 2017

S = 0.5397677312

12 tháng 3 2017

không biết

16 tháng 8 2015

ta có : S > 3/14 + 3/14 + 3/14 + 3/14 + 3/14

S > 15/14 > 14/14 = 1

S < 3/10 + 3/10 + 3/10 + 3/10 + 3/10

S < 15/10 < 20/10 = 2

vậy 1 < S < 2

 

5 tháng 7 2017

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)

5 tháng 7 2017

Gọi ƯC 12n + 1 ; 30n + 2 là d

12n+1 chia hết cho d

30n + 2 chia hết cho d

=> (30n+2) chia hết cho d

=> 15n+1 chia hết cho d

<=> (15n+1) - (12n+1) chia hết cho d

<=> n thuộc ước của 3 

n = -1 ; -3 ; 1 ; 3

p/s : chứng minh thô...