tại sao:3n-3+3+2=3(n-1)+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo:
\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)
mk xin làm câu b nhé mà A = chứ ko phải A : đâu nhé bạn.(^:mủ)
ta có: A = 5+5^2+5^3+...+5^100
vì 5 chia hết cho 5
5^2 chia hết cho 5
5^3 chia hết cho 5
.......
5^100 chia hết cho 5
nên A = 5+5^2+5^3+...+5^100 cũng chia hết cho 5(vì các số hạng tronh tổng chia hết cho 5)
a, gọi UCLN(2n+1,3n+1) là d
Ta có 2n+1 chia hết cho d=> 6n+3 chia hết cho d
3n+1 chia hết cho d=> 6n+2 chia hết cho d
=> (6n+3)-(6n+2)=1 chia hết cho d
=> d là ước của 1
Vậy 2n+1 và 3n+1 là 2 số nt cùng nhau
Bài 1
Để phân số ko tồn tại thì (n-2)(n+1)=0
=>n=2 hoặc n=-1
Bài 4:
Để phân số không tồn tại thì (2n-1)(n2+1)=0
=>2n-1=0
hay n=1/2
a)Để n+3/n-2 thuộc Z
=>n+3 chia hết n-2
=>n-2+5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
=>n thuộc {3;1;7;-3}
a)Để \(\frac{\text{n+3}}{\text{n-2}}\) \(\in\) Z
=> n+3 chia hết n-2
=> (n-2) +5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
Ta có:
n -2 | 1 | -1 | -5 | 5 |
n | 3 | 1 | -3 | 7 |
1:
\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^5\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^5}\right)}{n^3\left(1-\dfrac{2}{n^2}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}n^2\cdot3=+\infty\)
2: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{3n^6+3n^4-1}{3n-2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^6\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^6}\right)}{n\left(3-\dfrac{2}{n}\right)}=\lim\limits_{n\rightarrow\infty}n^5=+\infty\)
\(3n+2⋮3n-5\)
\(3n-5+7⋮3n-5\)
\(7⋮3n-5\)hay \(3n-5\inƯ\left(7\right)=\left\{1;7\right\}\)
3n - 5 | 1 | 7 |
3n | 6 | 12 |
n | 2 tm | 4 tm |
Tính chất phân phối giữa phép nhân và phép trừ 3n - 3 = 3(n - 1), còn 5 = 3+2
=> 3n-3+3+2 = 3(n-1)+5
3n - 3 + 3 + 2 = 3( n - 1 ) + 5
vì
3n - 3 + ( 3 + 2 ) = 3n - 3 + 5
\(\Rightarrow\) 3n - 3 + 5 = 3 - 3 + 5