K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

Sao bik mak hỏi thế Hoàng

23 tháng 12 2018

Gọi thời gian đội 1 và đội 2 hoàn thành công việc một mình lần lượt là x(ngày), y( ngày)(x,y>12)

Mỗi ngày đội 1 làm được phẫn việc là 1/x

Đội 2 làm được số phần việc là 1/y

cả hai đội làm được số phần việc là 1/12

ta có phương trình: 1/x+1/y=1/12(1)

Đội 1 làm trong 5 ngày rồi nghỉ, dội 2 làm tiếp 15 ngày thì họ làm được 75%công việc

từ đó ta có phương trình: 5/x+15/y=3/4(2)

Từ (1)(2) ta có hệ phương trình:{1/x+1/y=1/12; 5/x+15/y=3/4

Giải hệ pt ta tìm được x=20; y=30

KL:Nếu làm một mình thì đội thứ nhất hoàn thành công việc trong 20 ngày, đội thứ hai hoàn thành công việc trong 30 ngày.

16 tháng 2 2019

Gọi a, b lần lượt là số phần công việc mà đội I và đội II làm được trong 1h 
Vì 2 đội cùng làm việc thì hoàn thành công việc trong 24 giờ nên trong 1giờ cả 2 đội làm được 1 công việc :
<=> a + b = 1( 1 )                                                                                                             24
                  24
Trong 10 giờ, đội I làm được 10.a phần công việc, trong 15 giờ đội II làm được 15.b phần công việc.
Vì khi đó cả 2 đội làm được 1 công việc nên : 
10.a + 15.b = 1 ( 2 )
                     2
Từ ( 1 ) và ( 2 ) giải được a = 1 => Đội I làm trong 1 : 1 = 40 giờ thì xong công việc :
                                           40                                40
b = 1 => Đội II làm trong 1 : 1 
     60                                60
= 60 giờ thì xong công việc.
                Đáp số : 60 giờ

Chịu khó suy nghĩ là ra ngay thôi !!!

tk mk nha

DD
30 tháng 5 2021

Gọi thời gian mỗi đội làm một mình để xong công việc lần lượt là \(x,y\left(h\right);x,y>0\).

Mỗi giờ mỗi đội làm được lần lượt số phần công việc là: \(\frac{1}{x},\frac{1}{y}\)công việc.

Theo bài ra ta có hệ phương trình: 

\(\hept{\begin{cases}4\left(\frac{1}{x}+\frac{1}{y}\right)=1\\3\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{3}{y}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{6}\\\frac{1}{y}=\frac{1}{12}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=12\end{cases}}\left(tm\right)\).