Bài 4: Cho ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm D sao cho BA = BD. Từ B vẽ BH AD tại H. a) (TH) Chứng minh ABH DBH và ABH DBH . b) (VD) Từ D vẽ DE BC E AC . Chứng minh: AED cân và B, H, E thẳng hàng. c) (VD) Gọi F là trung điểm DC. CH và EF cắt nhau tại G. Chứng minh: G là trọng tâm ADC d) (VDC) Từ F vẽ đường thẳng song song với DE cắt BE tại I. So sánh: IH và IC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABH vuông tại H và ΔDBH vuông tại H có
BA=BD
BH chung
=>ΔABH=ΔDBH
=>góc ABH=góc DBH
b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D co
BE chung
BA=BD
=>ΔBAE=ΔBDE
=>góc ABE=góc DBE
=>B,H,E thẳng hàng
c:
Sửa đề: CH cắt AF tại G
Xét ΔADC có
CH,AF là trung tuyến
CH cắt AF tại G
=>G là trọng tâm
1, Theo định lí Pytago tam giác AHB vuông tại H
\(AH=\sqrt{AB^2-BH^2}=8cm\)
2, Xét tam giác ABH và tam giác ACH có
AB = AC ; AH _ chung
Vậy tam giác ABH = tam giác ACH (ch-cgv)
3, Vì tam giác ABC cân tại A có AH là đường cao
đồng thời là phân giác
Lại có DB = CE ; AB = AC
=> AD = AE
Xét tam giác ADH và tam giác AEH có
AD = AE ( cmt ) ; AH _ chung ; ^DAH = ^EAH
Vậy tam giác ADH = tam giác AEH (c.g.c)
=> DH = HE ( 2 cạnh tương ứng )
Vậy tam giác HDE cân tại H
4, Ta có AD/AB = AE/AC => DE//BC
1: AH=8cm
2: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
4: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
sao lại viết tắt, ko có hình hay lời giải gì à, đọc thế ai hỉu