Câu 1:tìm x
a. x^3 - x^2 = 0
b. (x - 1)^2 = x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a) \(\left(x-1\right)^2+\left(3-x\right)\left(3+x\right)=0\)
\(\Rightarrow x^2-2x+1+9-x^2=0\)
\(\Rightarrow2x=10\Rightarrow x=5\)
b) \(\left(x-2\right)^2-\left(2x+1\right)^2=0\)
\(\Rightarrow\left(x-2-2x-1\right)\left(x-2+2x+1\right)=0\)
\(\Rightarrow-\left(x+3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)
a) \(\left(x-1\right)^2+\left(3-x\right)\left(3+x\right)=0\\ \Leftrightarrow x^2-2x+1+9-x^2=0\\ \Leftrightarrow-2x=-10\\ \Leftrightarrow x=5\)
b) \(\left(x-2\right)^2-\left(2x+1\right)^2=0\\ \Leftrightarrow x^2-4x+4-4x^2-4x-1=0\\ \Leftrightarrow-3x^2-8x+3=0\\ \Leftrightarrow3x^2+8x-3=0\\ \Leftrightarrow\left(3x^2+9x\right)-\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)
a: (x+1)^3-x(x-2)^2+x-1=0
=>x^3+3x^2+3x+1-x(x^2-4x+4)+x-1=0
=>x^3+3x^2+4x-x^3+4x^2-4x=0
=>7x^2=0
=>x=0
b: =>x^3-3x^2+3x-1-x^3-27+3x^2-12=2
=>3x=2+1+27+12=39+3=42
=>x=14
b: Ta có: \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+6x^2=4\)
\(\Leftrightarrow12x=12\)
hay x=2
d: Ta có: \(3\left(x-1\right)^2-3x\left(x-5\right)=1\)
\(\Leftrightarrow3x^2-6x+3-3x^2+15x=1\)
\(\Leftrightarrow9x=-2\)
hay \(x=-\dfrac{2}{9}\)
`@` `\text {Ans}`
`\downarrow`
`a)`
\(5\cdot x^3-5=0\)
`=> 5*x^3 = 0+5`
`=> 5*x^3 = 5`
`=> x^3 = 5 \div 5`
`=> x^3 = 1`
`=> x^3 = 1^3`
`=> x=1`
Vậy, `x=1.`
`b)`
\(( x+1)^2 = 16\)
`=> (x+1)^2 = (+-4)^2`
`=>`\(\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4-1\\x=-4-1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
Vậy, `x \in {3; -5}`
`c)`
\(( x+1)^3 = 27\)
`=> (x+1)^3 = 3^3`
`=> x+1=3`
`=> x=3-1`
`=> x=2`
Vậy, `x=2.`
`d)`
\(( x-1)^3 = 343\)
`=> (x-1)^3 = 7^3`
`=> x-1=7`
`=> x=7+1`
`=> x=8`
Vậy, `x=8.`
`e)`
\((2x - 1^3) = 125\) hay đề là `(2x-1)^3 = 125` vậy ạ?
Mình làm cả 2 TH nhé!
`(2x-1^3)=125`
`=> 2x-1=125`
`=> 2x=125+1`
`=> 2x=126`
`=> x=126 \div 2`
`=> x=63`
TH2:
`(2x-1)^3 = 125`
`=> (2x-1)^3 = 5^3`
`=> 2x-1=5`
`=> 2x=5+1`
`=> 2x=6`
`=> x=6 \div 2`
`=> x=3`
Vậy, `x=3.`
(a) \(5x^3-5=0\Leftrightarrow5x^3=5\Leftrightarrow x^3=1\Leftrightarrow x=1\)
(b) \(\left(x+1\right)^2=16\Rightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
(c) \(\left(x+1\right)^3=27\Leftrightarrow x+1=3\Leftrightarrow x=2\)
(d) \(\left(x-1\right)^3=343\Leftrightarrow x-1=7\Leftrightarrow x=8\)
(e) \(\left(2x-1\right)^3=125\Leftrightarrow2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\)
a: Ta có: \(\left(x+1\right)^2-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
b: Ta có: \(2\left(3x-2\right)^2=9x^2-4\)
\(\Leftrightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(6x-4-3x-2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
\(\dfrac{1}{3}:\left(\dfrac{1}{6}-\dfrac{1}{2}\right)< =x< =\dfrac{2}{3}\left(-\dfrac{1}{6}+\dfrac{3}{4}\right)\)
=>\(\dfrac{1}{3}:\left(\dfrac{1}{6}-\dfrac{3}{6}\right)< =x< =\dfrac{2}{3}\left(-\dfrac{2}{12}+\dfrac{9}{12}\right)\)
=>\(\dfrac{1}{3}:\dfrac{-2}{6}< =x< =\dfrac{2}{3}\cdot\dfrac{7}{12}\)
=>\(\dfrac{1}{3}\cdot\dfrac{-6}{2}< =x< =\dfrac{14}{24}=\dfrac{7}{12}\)
=>\(-1< =x< =\dfrac{7}{12}\)
=>Chọn A
\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(\text{a) }x^3-x^2=0\Leftrightarrow x^2\left(x-1\right)=0\Leftrightarrow x=0\text{ hoặc }x-1=0\)
\(\Leftrightarrow x=0\text{ hoặc }x=1\)
\(\text{b) }\left(x-1\right)^2=x-1\Leftrightarrow\left(x-1\right)\left(x-1\right)-\left(x-1\right).1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-1-1\right)=0\)\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow x-1=0\text{ hoặc }x-2=0\)
\(\Leftrightarrow x=1\text{ hoặc }x=2\)