cho a,b,c >0
chứng minh \(\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3.\left(1+\frac{3}{2+abc}\right)^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô-si cho 3 số dương ta có:
\(\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(\sqrt[3]{\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)}\right)^4\)
Ta chứng minh: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\left(1+\frac{3}{2+abc}\right)^3\left(1\right)\)
Theo BĐT Cô - si ta có:
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\)
\(\ge1+\frac{3}{\sqrt[3]{abc}}+\frac{3}{\sqrt[3]{\left(abc\right)^2}}+\frac{1}{abc}=\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\ge\left(1+\frac{3}{2+abc}\right)^3\)
(Vì \(abc+2=abc+1+1\ge3\sqrt[3]{abc}\))
Vậy \(\left(1\right)\) được chứng minh \(\Rightarrow BĐT\) đúng \(\forall a,b,c>0\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow VT\ge3\sqrt[3]{\left[\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\right]^4}\)
\(\Rightarrow VT\ge3\left(\sqrt[3]{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}}\right)^4\left(1\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\\\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2}}\end{cases}}\)
\(\Rightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge1+3\sqrt[3]{\frac{1}{abc}}\)
\(+3\sqrt[3]{\frac{1}{a^2b^2c^2}}+\frac{1}{abc}\)
\(\Rightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\)
\(\Rightarrow3\left(\sqrt[3]{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}}\right)^4\)
\(\ge3\left(1+\frac{1}{\sqrt[3]{abc}}\right)^4\)
\(\left(2\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt[3]{abc}\le\frac{abc+1+1}{3}=\frac{abc+2}{3}\)
\(\Rightarrow1+\frac{1}{\sqrt[3]{abc}}\ge1+\frac{3}{abc+2}\)
\(\Rightarrow3\left(1+\frac{1}{\sqrt[3]{abc}}\right)^4\ge3\left(1+\frac{3}{abc+2}\right)^4\left(3\right)\)
Từ (1) , (2) và (3)
\(\Rightarrow VT\ge3\left(1+\frac{3}{abc+2}\right)^4\)
\(\Leftrightarrow\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(1+\frac{3}{2+abc}\right)^4\left(đpcm\right)\)
Chúc bạn học tốt !!!
Bài hay quá!
Theo bất đẳng thức Cô-Si cho 3 số dương ta có
\(\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\sqrt[3]{\left(1+\frac{1}{a}\right)^4\left(1+\frac{1}{b}\right)^4\left(1+\frac{1}{c}\right)^4}\).
Do đó ta chỉ cần chứng minh \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\left(1+\frac{3}{2+abc}\right)^3.\) (Lúc đó kết hợp hai bất đẳng thức ta được ngay điều phải chứng minh).
Thực vậy, đầu tiên áp dụng bất đẳng thức Cô-Si cho 3 số dương ta có
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=1+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{1}{abc}\ge\)
\(\ge1+\frac{3}{\sqrt[3]{abc}}+\frac{3}{\sqrt[3]{a^2b^2c^2}}+\frac{1}{abc}=\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3.\)
Mặt khác ta có \(2+abc=1+1+abc\ge3\sqrt[3]{abc}\to\frac{1}{\sqrt[3]{abc}}\ge\frac{3}{2+abc}\to\)
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\left(1+\frac{3}{2+abc}\right)^3.\) (ĐPCM)
Áp dụng BĐT Cô si cho ba số dương. Ta có:
\(\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\sqrt[3]{\left[\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)^4\right]}\)(1)
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=1+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{1}{abc}\)
\(\ge1+\frac{3}{\sqrt[3]{abc}}+\frac{3}{\sqrt[3]{abc^2}}+\frac{1}{abc}\)
\(=\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\); (2)
\(2+abc=1+1+abc\ge3\sqrt[3]{abc}\)
\(\Rightarrow\frac{1}{\sqrt[3]{abc}}>\frac{3}{2+abc}\) (3)
Từ (1), (2) và (3) ta suy ra được đpcm
Đẳng thức xảy ra khi và chỉ khi a = b =c = 1
P/s: Bài này trong toán tuổi thơ có hướng dẫn sơ sơ nên đơn giản thôi bạn
Đặt: \(\hept{\begin{cases}\frac{1-a}{1+a}=x\\\frac{1-b}{1+b}=y\\\frac{1-c}{1+c}=z\end{cases}}\)
\(\Rightarrow-1< x,y,z< 1\)và \(\hept{\begin{cases}\frac{1-x}{1+x}=a\\\frac{1-y}{1+y}=b\\\frac{1-z}{1+z}=c\end{cases}}\)
Theo đề bài ta có: \(abc=1\Rightarrow\left(1-x\right)\left(1-y\right)\left(1-z\right)=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)
\(\Rightarrow x+y+z+xyz=0\)
Mặt khác ta có: \(\frac{4a}{\left(a+1\right)^2}=1-x^2;\frac{2}{a+1}=1+x\)
Và: \(\frac{4b}{\left(b+1\right)^2}=1-y^2;\frac{2}{b+1}=1+y\)
Và: \(\frac{4c}{\left(c+1\right)^2}=1-z^2;\frac{2}{c+1}=1+z\)
Nên: \(\frac{4a}{\left(a+1\right)^2}+\frac{4b}{\left(b+1\right)^2}+\frac{4c}{\left(c+1\right)^2}\le1+2.\frac{2}{a+1}.\frac{2}{b+1}.\frac{2}{c+1}\)
\(\Leftrightarrow x^2+y^2+z^2+\left(xy+yz+zx\right)+2\left(x+y+z+xyz\right)\ge0\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge0\)
Đây là BĐT luôn đúng nên ta có đpcm.
ミ★ᗪเệų ℌųуềй (ßăйǥ ßăйǥ ²к⁶)★彡 Giải ghê quá, t chẳng hiểu gì.
Đặt \(\left(a;b;c\right)=\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\)
BĐT \(\Leftrightarrow \sum\limits_{cyc} \frac{xy}{(x+y)^2} \leq \frac{1}{4}+\frac{4xyz}{(x+y)(y+z)(z+x)}\)
Ta có: \(VP-VT=\frac{4\left(x-y\right)^2\left(y-z\right)^2\left(z-x\right)^2}{4\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\ge0\)
BĐT hiển nhiên đúng.
Vì nó thik thì nó \(\ge\) thôi
Đúng 100%
Đúng 100%
Đúng 100%